Project description:Previously, transcriptomics data for mollusc has been obtained by whole-brain bulk RNA-seq and low-throughput scRNA-seq. We want to construct the first molluscan high-throughput single-neuron transcriptomes for Berghia stephanieae. Around 129,000 cells were collected from 20 brains and the libraries were constructed using the 10X Genomics' Chromium platform. The brains were separated into two samples: the main brain (i.e., the cerebropleural, pedal, buccal ganglion) and the rhinophore ganglion sample. After library preparation, around 1,000 cells were receovered and sequenced. After data analysis, the cells formed eight clusters with marker genes for each cluster identified. Various cell populations that express a wide range of both small-molecule neurotransmitters and neuropeptides such as serotonergic, small cardioactive peptide (SCP), APGWamide, and FMRFamide cells were also identified in the dataset. Interestingly, cells from the rhinophore ganglion of Berghia exhibit great cell heterogeneity, with cells splitting into two general categories and four distinct clusters. The project produced a single-cell dissociation protocol that can be adapted for use in other nudibranch molluscs and a custom data analysis pipeline for data of this nature.
Project description:Berghia stephanieae is a stenophagous sea slug that preys upon glass anemones, such as Exaiptasia diaphana. Glass anemones host photosynthetic dinoflagellate endosymbionts that sea slugs ingest when consuming E. diaphana. However, the prevalence of these photosynthetic dinoflagellate endosymbionts in sea slugs appears to be short-lived, particularly if B.stephanieae is deprived of prey that host these microalgae (e.g., during bleaching events impacting glass anemones). In the present study, we investigated this scenario, along with food deprivation, and validated the use of a non-invasive and non-destructive approach employing chlorophyll fluorescence as a proxy to monitor the persistence of the association between sea slugs and endosymbiotic photosynthetic dinoflagellates acquired through the consumption of glass anemones. Berghia stephanieae deprived of a trophic source hosting photosynthetic dinoflagellate endosymbionts (e.g., through food deprivation or by feeding on bleached E. diaphana) showed a rapid decrease in minimum fluorescence (Fo) and photosynthetic efficiency (Fv/Fm) when compared to sea slugs fed with symbiotic anemones. A complete loss of endosymbionts was observed within 8 days, confirming that no true symbiotic association was established. The present work opens a new window of opportunity to rapidly monitor in vivo and over time the prevalence of associations between sea slugs and photosynthetic dinoflagellate endosymbionts, particularly during bleaching events that prevent sea slugs from incorporating new microalgae through trophic interactions.
Project description:BackgroundIntracellular sequestration requires specialized cellular and molecular mechanisms allowing a predator to retain and use specific organelles that once belonged to its prey. Little is known about how common cellular mechanisms, like phagocytosis, can be modified to selectively internalize and store foreign structures. One form of defensive sequestration involves animals that sequester stinging organelles (nematocysts) from their cnidarian prey. While it has been hypothesized that nematocysts are identified by specialized phagocytic cells for internalization and storage, little is known about the cellular and developmental mechanisms of this process in any metazoan lineage. This knowledge gap is mainly due to a lack of genetically tractable model systems among predators and their cnidarian prey.ResultsHere, we introduce the nudibranch Berghia stephanieae as a model system to investigate the cell, developmental, and physiological features of nematocyst sequestration selectivity. We first show that B. stephanieae, which feeds on Exaiptasia diaphana, selectively sequesters nematocysts over other E. diaphana tissues found in their digestive gland. Using confocal microscopy, we document that nematocyst sequestration begins shortly after feeding and prior to the formation of the appendages (cerata) where the organ responsible for sequestration (the cnidosac) resides in adults. This finding is inconsistent with previous studies that place the formation of the cnidosac after cerata emerge. Our results also show, via live imaging assays, that both nematocysts and dinoflagellates can enter the nascent cnidosac structure. This result indicates that selectivity for nematocysts occurs inside the cnidosac in B. stephanieae, likely in the cnidophage cells themselves.ConclusionsOur work highlights the utility of B. stephanieae for future research, because: (1) this species can be cultured in the laboratory, which provides access to all developmental stages, and (2) the transparency of early juveniles makes imaging techniques (and therefore cell and molecular assays) feasible. Our results pave the way for future studies using live imaging and targeted gene editing to identify the molecular mechanisms involved in nematocyst sequestration. Further studies of nematocyst sequestration in B. stephanieae will also allow us to investigate how common cellular mechanisms like phagocytosis can be modified to selectively internalize and store foreign structures.