Project description:We established simple synthetic microbial communities in a microcosm model system to determine the mechanisms that underlay cross-feeding in microbial methane-consuming communities. Co-occurring strains from Lake Washington sediment were used that are involved in methane consumption, a methanotroph and two non-methanotrophic methylotrophs.
Project description:The microbiota plays a crucial role in protecting plants from pests and pathogens. The protection provided by the microbiota constitutes not just the plant’s first line of defense, but possibly its most potent one, as experimental disruptions to the microbiota cause plants to succumb to otherwise asymptomatic infections. To understand how microbial plant defense is deployed, we applied a complex and tractable plant-soil-microbiome microcosm. This system, consisting of Arabidopsis plants and a 150-member bacterial synthetic community, provides a platform for the discovery of novel bacterial plant-beneficial traits, under a realistically complex microbial community context. To identify which components of the plant microbiota are critical for plant defense, we deconstructed this microcosm top-down, removing different microbial groups from the community to examine their protective effect on the plant when challenged with the leaf pathogen Pseudomonas syringae. This process of community deconstruction revealed a critical role for the genus Bacillus in protecting the plant from infection. Using plant RNA-seq and bacterial co-culturing experiments, we demonstrated that Bacillus-provided plant protection is independent of plant immune system activation. We also show that the level of plant protection is strongly dependent on the diversity of the protective inoculum. We show that deconstructing the microbiome top-down is a powerful tool for identifying and prioritizing microbial taxa with specific functions within it.
Project description:Polycyclic aromatic hydrocarbons (PAHs), some of the most widespread organic contaminants, are highly toxic to soil microorganisms. Whether long-term polluted soils can still respond to the fresh input of pollutants is unknown. In this study, the soil enzyme activity, soil microbial community structure and function and microbial metabolism pathways were examined to systematically investigate the responses of soil microorganisms to fresh PAH stress. Microbial activity as determined by soil dehydrogenase and urease activity was inhibited upon microbe exposure to PAH stress. In addition, the soil microbial community and function were obviously shifted under PAH stress. Both microbial diversity and richness were decreased by PAH stress. Rhizobacter, Sphingobium, Mycobacterium, Massilia, Bacillus and Pseudarthrobacter were significantly affected by PAH stress and can be considered important indicators of PAH contamination in agricultural soils. Moreover, the majority of microbial metabolic function predicted to respond to PAH stress were affected adversely. Finally, soil metabolomics further revealed specific inhibition of soil metabolism pathways associated with fatty acids, carbohydrates and amino acids. Therefore, the soil metabolic composition distinctively changed, reflecting a change in the soil metabolism. In summary, fresh contaminant introduction into long-term polluted soils inhibited microbial activity and metabolism, which might profoundly affect the whole soil quality.
Project description:The potential of the earthworm Eisenia andrei to reduce soil methanogens, and thus methane emissions to the atmosphere, were assayed in a microcosm experiment. Soils were incubated for 2, 4 and 6 months. We measured microarray parameters (methanogenic diversity) at the start of incubation, as well as after 2, 4 and 6 months of incubation in microcosms with or without earthworms. Methanosarcina barkeri was the most abundant genus that was revealed by AnaeroChip in our experiment.
Project description:Pulmonary arterial hypertension (PAH) is a common and serious complication of left-to-right shunt congenital heart disease (CHD).Some studies have provided evidence indicating that various circRNAs are abnormally expressed in pulmonary hypertension. However, the diagnostic value and biological functions of circRNAs in PAH remain largely elusive. To study the potential roles of circRNAs in PAH, we performed microarray analysis to identify circRNAs differentially expressed between pediatric patients with PAH due to CHD and control subjects.
2021-04-11 | GSE171827 | GEO
Project description:Studies of microbial diversity during dark fermentation of food waste
| PRJNA497577 | ENA
Project description:Studies of microbial diversity during anaerobic digestion of chicken manure