Project description:Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Proprioceptors are diverse: different subtypes detect different features of joint kinematics, such as position, directional movement, and vibration. However, because they are located within complex and dynamic peripheral tissues, the underlying mechanisms of proprioceptor feature selectivity remain poorly understood. Here, we investigate molecular and biomechanical contributions to proprioceptor diversity in the Drosophila leg. Using single-nucleus RNA sequencing, we found that different proprioceptor subtypes express similar complements of mechanosensory and other ion channels. However, anatomical reconstruction of the proprioceptive organ and connected tendons revealed major biomechanical differences between proprioceptor subtypes. We constructed a computational model of the proprioceptors and tendons, which identified a putative biomechanical mechanism for joint angle selectivity. The model also predicted the existence of a goniotopic map of joint angle among position-tuned proprioceptors, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, our discovery of proprioceptive maps in the fly leg reveals common organizational principles between proprioception and other topographically organized sensory systems.
Project description:Our ability to sense and move our bodies relies on proprioceptors, sensory neurons that detect mechanical forces within the body. Different subtypes of proprioceptors detect different kinematic features, such as joint position, movement, and vibration, but the mechanisms that underlie proprioceptor feature selectivity remain poorly understood. Using single-nucleus RNA sequencing (RNA-seq), we found that proprioceptor subtypes in the Drosophila leg lack differential expression of mechanosensitive ion channels. However, anatomical reconstruction of the proprioceptors and connected tendons revealed major biomechanical differences between subtypes. We built a model of the proprioceptors and tendons that identified a biomechanical mechanism for joint angle selectivity and predicted the existence of a topographic map of joint angle, which we confirmed using calcium imaging. Our findings suggest that biomechanical specialization is a key determinant of proprioceptor feature selectivity in Drosophila. More broadly, the discovery of proprioceptive maps reveals common organizational principles between proprioception and other topographically organized sensory systems.
Project description:The lung contains numerous specialized cell-types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here, we report 83 cell states, several spatially-resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated scRNA-Seq and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programs, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell-types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Project description:The lung contains numerous specialized cell-types with distinct roles in tissue function and integrity. To clarify the origins and mechanisms generating cell heterogeneity, we created a comprehensive topographic atlas of early human lung development. Here, we report 83 cell states, several spatially-resolved developmental trajectories and predict cell interactions within defined tissue niches. We integrated scRNA-Seq and spatially resolved transcriptomics into a web-based, open platform for interactive exploration. We show distinct gene expression programs, accompanying sequential events of cell differentiation and maturation of the secretory and neuroendocrine cell-types in proximal epithelium. We define the origin of airway fibroblasts associated with airway smooth muscle in bronchovascular bundles and describe a trajectory of Schwann cell progenitors to intrinsic parasympathetic neurons controlling bronchoconstriction. Our atlas provides a rich resource for further research and a reference for defining deviations from homeostatic and repair mechanisms leading to pulmonary diseases.
Project description:This SuperSeries is composed of the following subset Series: GSE33149: Substrate selectivity for semisynthetic CK2 proteins with various posttranslational modifications GSE33150: Substrate selectivity for semisynthetic CK2 proteins with Pin1 Refer to individual Series
Project description:Adult leg muscle precursors are associated to leg imaginal disc, here we provide bulk RNA sequecing of FACS sorted myoblasts from dissected imaginal leg discs at beginning of pupation.