Project description:NRVMs were subjected to varying durations of ischemia or ischemia+reperfusion using coverslip hypoxia. Expression profiling was used to identify genes that are differentially regulated in either event. We used microarrays to detail the global program of gene expression underlying ischemia and reperfusion using Coverslip Hypoxia and identified distinct classes of genes regulated during these processes. Experiment Overall Design: RNA was extracted from NRVMs subjected to varying durations of ischemia or ischemia+reperfusion and hybridized to rat genome Affymetrix arrays.
Project description:NRVMs were subjected to varying durations of ischemia or ischemia+reperfusion using coverslip hypoxia. Expression profiling was used to identify genes that are differentially regulated in either event. We used microarrays to detail the global program of gene expression underlying ischemia and reperfusion using Coverslip Hypoxia and identified distinct classes of genes regulated during these processes. Keywords: time course
Project description:Heart disease remains the leading cause of death globally. Although reperfusion following myocardial ischemia can prevent death by restoring nutrient flow, ischemia/reperfusion injury can cause significant heart damage. The mechanisms that drive ischemia/reperfusion injury are not well understood; currently, few methods can predict the state of the cardiac muscle cell and its metabolic conditions during ischemia. Here, we explored the energetic sustainability of cardiomyocytes, using a model for cellular metabolism to predict the levels of ATP following hypoxia. We modeled glycolytic metabolism with a system of coupled ordinary differential equations describing the individual metabolic reactions within the cardiomyocyte over time. Reduced oxygen levels and ATP consumption rates were simulated to characterize metabolite responses to ischemia. By tracking biochemical species within the cell, our model enables prediction of the cell’s condition up to the moment of reperfusion. The simulations revealed a distinct transition between energetically sustainable and unsustainable ATP concentrations for various energetic demands. Our model illustrates how even low oxygen concentrations allow the cell to perform essential functions. We found that the oxygen level required for a sustainable level of ATP increases roughly linearly with the ATP consumption rate. An extracellular O2 concentration of ~0.007 mM could supply basic energy needs in non-beating cardiomyocytes, suggesting that increased collateral circulation may provide an important source of oxygen to sustain the cardiomyocyte during extended ischemia. Our model provides a time-dependent framework for studying various intervention strategies to change the outcome of reperfusion.
Project description:To find the genes with significant expression changes after liver ischemia-reperfusion injury,we established a hypoxia-reoxygenation model using AML12 cells. We then performed gene expression profiling analysis using data obtained from RNA-seq under normoxia and hypoxia-reoxygenation conditions.