Project description:Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S rRNA 3’ end maturation during late-40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the effects of eIF5B have not been studied at the genome-wide level in any organism, and 18S rRNA 3’ end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat-stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3’ end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3’ end maturation or metabolism. We quantitatively defined new processing hotspots and identified adenylation as the prevalent non-templated RNA modification at the 3’ ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNAi to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3’ portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late-40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, mRNA translation initiation, and siRNA biogenesis in plants.
Project description:Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S rRNA 3’ end maturation during late-40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the effects of eIF5B have not been studied at the genome-wide level in any organism, and 18S rRNA 3’ end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat-stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3’ end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3’ end maturation or metabolism. We quantitatively defined new processing hotspots and identified adenylation as the prevalent non-templated RNA modification at the 3’ ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNAi to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3’ portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late-40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, mRNA translation initiation, and siRNA biogenesis in plants.
Project description:Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S rRNA 3’ end maturation during late-40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the effects of eIF5B have not been studied at the genome-wide level in any organism, and 18S rRNA 3’ end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat-stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3’ end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3’ end maturation or metabolism. We quantitatively defined new processing hotspots and identified adenylation as the prevalent non-templated RNA modification at the 3’ ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNAi to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3’ portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late-40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, mRNA translation initiation, and siRNA biogenesis in plants.
Project description:Ribosome biogenesis is essential for protein synthesis in gene expression. Yeast eIF5B has been shown biochemically to facilitate 18S rRNA 3’ end maturation during late-40S ribosomal subunit assembly and gate the transition from translation initiation to elongation. But the effects of eIF5B have not been studied at the genome-wide level in any organism, and 18S rRNA 3’ end maturation is poorly understood in plants. Arabidopsis HOT3/eIF5B1 was found to promote development and heat-stress acclimation by translational regulation, but its molecular function remained unknown. Here, we show that HOT3 is a late-stage ribosome biogenesis factor that facilitates 18S rRNA 3’ end processing and is a translation initiation factor that globally impacts the transition from initiation to elongation. By developing and implementing 18S-ENDseq, we revealed previously unknown events in 18S rRNA 3’ end maturation or metabolism. We quantitatively defined new processing hotspots and identified adenylation as the prevalent non-templated RNA modification at the 3’ ends of pre-18S rRNAs. Aberrant 18S rRNA maturation in hot3 further activated RNAi to generate RDR1- and DCL2/4-dependent risiRNAs mainly from a 3’ portion of 18S rRNA. We further showed that risiRNAs in hot3 were predominantly localized in ribosome-free fractions not responsible for the 18S rRNA maturation or translation initiation defects in hot3. Our study uncovered the molecular function of HOT3/eIF5B1 in 18S rRNA maturation at the late-40S assembly stage and revealed the regulatory crosstalk among ribosome biogenesis, mRNA translation initiation, and siRNA biogenesis in plants.
Project description:Tumor recurrence is main pattern of treatment failure for early-stage hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying disease recurrence remain poorly understood. Here, we showed that 18S rRNA N6-methyladenosine (m6A1832) modification and its methyltransferase complex METTL5/TRMT112 were upregulated in HCC and correlated with poor prognosis. Loss-of-function and gain-of-function assays demonstrated that METTL5/TRMT112 mediated 18S rRNA m6A1832 modification promotes HCC tumorigenesis in vitro and in vivo. Mechanistically, 18S rRNA m6A1832 modification selectively regulated the translation of mRNAs with long 5’UTR and short 3’UTR through affecting the assembly of 80S subunit at translation initiation and its dissociation at translation termination which was executed by weakening the interaction of ABCE1 with eRF1 and eRF3. Moreover, METTL5-mediated 18S rRNA m6A1832 modification regulated β-oxidation of long-chain fatty acid through ACSL4 to promote HCC progression. Our work uncovered a novel layer of mRNA translation regulation mechanism at ribosome 80S subunit assembly and dissociation step mediated by 18S rRNA m6A1832 modification and revealed a new crosslink between RNA epigenetic modification and fatty acid metabolism in HCC.
Project description:The 18S rRNA sequence is highly conserved, particularly at its 3’-end, which is formed by the endonuclease Nob1. How Nob1 identifies its target sequence is not known, and in vitro experiments have shown Nob1 to be error-prone. Moreover, the sequence around the 3’-end is degenerate with similar sites nearby. Here we used yeast genetics, biochemistry, and next generation sequencing to investigate a role for the ATPase Rio1 in monitoring the accuracy of the 18S rRNA 3’-end. We demonstrate that Nob1 can miscleave its rRNA substrate and that miscleaved rRNA accumulates upon bypassing the Rio1-mediated quality control step, but not in healthy cells with intact quality control mechanisms. Mechanistically, we show that Rio1 binding to miscleaved rRNA is weaker than its binding to accurately processed 18S rRNA. Accordingly, excess Rio1 results in accumulation of miscleaved rRNA. Ribosomes containing miscleaved rRNA can translate, albeit more slowly, thereby inviting collisions with trailing ribosomes. These collisions result in degradation of the defective ribosomes utilizing parts of the machinery for mRNA quality control. Altogether, the data support a model in which Rio1 inspects the 3’-end of the nascent 18S rRNA to prevent miscleaved 18S rRNA-containing ribosomes from erroneously engaging in translation, where they induce ribosome collisions. The data also demonstrate how ribosome collisions purify cells of altered ribosomes with different functionalities, with important implications for the concept of ribosome heterogeneity.
Project description:Purpose: Pre-ribosomal RNA is cleaved at defined sites, but many endonucleases involved in 18S rRNA release are not known. We apply an in vivo cross-linking technique coupled with deep sequencing (CRAC) that captures transcriptome-wide interactions between a yeast candidate pre-rRNA endonuclease (Utp24) and its targets in a living cell. Methods: We apply CRAC to an HTP-tagged Utp24 protein (HTP: His6 - TEV cleavage site - two copies of the z-domain of Protein A). At least two independent experiments were performed and analyzed separately. Results: We found that yeast Utp24 UV-crosslinked in vivo to the U3 snoRNA and all (pre-)rRNA elements that form the central pseudoknot in the 18S rRNA. The pseudoknot is an evolutionarily highly conserved structure that is required to ensure pre-rRNA processing at three cleavage sites (A0, A1 and A2) and still present in the mature rRNA. According to our crosslinking data, the endonuclease Utp24 is placed in close proximity to site A1 at the 5'-end of the 18S rRNA. Conclusion: Our study strongly supports the hypothesis that Utp24 cleaves pre-rRNA at sites A1 and A2. Examination of targets for pre-rRNA endonucleases in yeast cells.
Project description:Iron-rich pelagic aggregates (iron snow) were collected directly onto silicate glass filters using an electronic water pump installed below the redoxcline. RNA was extracted and library preparation was done using the NEBNext Ultra II directional RNA library prep kit for Illumina. Data was demultiplied by GATC sequencing company and adaptor was trimmed by Trimgalore. After trimming, data was processed quality control by sickle and mRNA/rRNA sequences were sorted by SortmeRNA. mRNA sequences were blast against NCBI-non redundant protein database and the outputs were meganized in MEGAN to do functional analysis. rRNA sequences were further sorted against bacterial/archeal 16S rRNA, eukaryotic 18S rRNA and 10,000 rRNA sequences of bacterial 16S rRNA, eukaryotic 18S rRNA were subset to do taxonomy analysis.
Project description:Ribosome-associated quality control (RQC) pathways monitor and respond to stalling of translating ribosomes. Using a newly developed technique based on in vivo UV crosslinking and mass spectrometry, we identify a C-terminal region in Hel2/Rqt1 as an RNA binding domain, with amino acids L501/K502 directly interacting with RNA. In vivo crosslinking of Hel2 revealed binding to 18S rRNA and translating mRNAs. Consistent with the 18S binding site located between mRNA entrance and exit channels, Hel2 preferentially bound mRNA both upstream and downstream of the termination codon. A C-terminal truncation that deleted L501/K502, abolished crosslinking to 18S rRNA, altered mRNA binding patterns, and reduced Hel2 function comparable to hel2∆. Asc1, also participates in RQC and ASC1 deletion impaired Hel2 18S and mRNA binding. We conclude that Hel2 is recruited or stabilized on translating 40S ribosomal subunits by interactions with 18S rRNA and Asc1. Ribosome-bound Hel2 interacts with mRNA, predominately during translation termination.