Project description:The extreme environments of the Tibetan Plateau offer significant challenges to human survival, demanding novel adaptations. While the role of biological and agricultural adaptations in enabling early human colonization of the plateau has been widely discussed, the contribution of pastoralism is less well understood, especially the dairy pastoralism that has historically been central to Tibetan diets. Here, we analyze preserved proteins from the dental calculus of 40 ancient individuals to report the earliest direct evidence of dairy consumption on the Tibetan Plateau. Our palaeoproteomic results demonstrate that dairy pastoralism began on the higher plateau by approximately 3,500 years ago, more than 2,000 years earlier than the recording of dairying in historical sources. With less than 1% of the Tibetan Plateau dedicated to farmland, pastoralism and the milking of ruminants were essential for large-scale human expansion into agriculturally-marginal regions that make up the majority of the plateau. Dairy pastoralism allowed conversion of abundant grasslands into nutritional human food, which facilitating adaptation in the face of extreme climatic and altitudinal pressures, and maximizing the land area available for long-term human occupation of the “roof of the world”.
Project description:Tibetan hulless barley (Hordeum vulgare L.) growing in the Qinghai-Tibet Plateau is the major staple food crop for the Tibetans. However, because of soil salinity, the agricultural production of hulless barley is challenged by salinity stress. Here, we perform data-independent acquisition (DIA)-based quantitative proteomics of two barley cultivars with differential salinity tolerance under salt stress
2020-12-20 | PXD023237 |
Project description:Characteristics of rhizosphere fungal community of Huangshan pine along the elevation gradients in Huangshan Mountain
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses. 18 samples were collected from 3 plots in Haibei Station, with 6 replicates in each plot
Project description:Higher incidence of chronic atrophic gastritis (CAG) is generally considered a precancerous lesion of gastric cancer (GC). Therefore, the early diagnosis and treatment of CAG, especially in Tibetan Plateau areas, play an important role in the prevention of GC. The atrophic and non-atrophic gastric mucosal tissue samples from 7 patients with chronic gastritis (CG) and cancer tissue samples from 3 patients with GC were collected. High-throughput sequencing was performed to identify the differentially expressed in lncRNAs, circRNAs, miRNAs, and mRNAs, followed by the construction of competitive endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA network) in CAG. Those differentially expressed mRNAs with the same expression trend in both CAG and GC were further identified. Two datasets (GSE153224 and GSE163416), involving data in non-Tibetan Plateau areas, were used to further screen out plateau-specific mRNAs in CAG, followed by identification of the plateau-specific and ferroptosis related mRNAs. GO and KEGG enrichment analysis were performed to investigate the biological functions of plateau-specific mRNAs in CAG. This study may provide useful information for identifying potential biomarkers for the diagnosis of CAG.
Project description:Higher incidence of chronic atrophic gastritis (CAG) is generally considered a precancerous lesion of gastric cancer (GC). Therefore, the early diagnosis and treatment of CAG, especially in Tibetan Plateau areas, play an important role in the prevention of GC. The atrophic and non-atrophic gastric mucosal tissue samples from 7 patients with chronic gastritis (CG) and cancer tissue samples from 3 patients with GC were collected. High-throughput sequencing was performed to identify the differentially expressed in lncRNAs, circRNAs, miRNAs, and mRNAs, followed by the construction of competitive endogenous RNA (ceRNA) regulatory networks (lncRNA/circRNA-miRNA-mRNA network) in CAG. Those differentially expressed mRNAs with the same expression trend in both CAG and GC were further identified. Two datasets (GSE153224 and GSE163416), involving data in non-Tibetan Plateau areas, were used to further screen out plateau-specific mRNAs in CAG, followed by identification of the plateau-specific and ferroptosis related mRNAs. GO and KEGG enrichment analysis were performed to investigate the biological functions of plateau-specific mRNAs in CAG. This study may provide useful information for identifying potential biomarkers for the diagnosis of CAG.
Project description:Global warming substantially changes precipitation patterns in the Tibetan plateau, with projection of increased precipitation in southern and northern Tibet but decreased precipitation in the center. Understanding mechanisms of such changes in greenhouse gas emissions is of vital importance in predicting ecosystem feedbacks to climate changes. Nonetheless, it has been hampered by limited knowledge in soil microbial communities, one of the major drivers of greenhouse gas emission. Here, we report a field experiment simulating drying and wetting conditions in the Tibetan grassland. Our field site is located at the Haibei Alpine Grassland Ecosystem Research Station in the northeast of Tibet Plateau, China, and we employed GeoChip 5.0 180K to analyze microbial responses.
2016-05-28 | GSE82006 | GEO
Project description:Fungal community along elevation gradient in Segila Mountains