Project description:Small non coding RNA molecules (sncRNAs) are key mediators of virulence and stress inducible gene expressions in some pathogens. In this work we identify sncRNAs in the Gram positive opportunistic pathogen Enterococcus faecalis. Enterococcus faecalis. We characterized 11 sncRNAs by tiling microarray analysis, 5’ and 3’ RACE-PCR, and Northern blot analysis. Six sncRNAs were specifically expressed at exponential phase, two sncRNAs were observed at stationary phase, and three were detected during both phases. This is the first experimental genome-wide identification of sncRNAs in E. faecalis and provides impetus to the understanding of gene regulation in this important human pathogen.
Project description:Analysis of changes in gene expression in Enterococcus faecalis OG1 delta-EF2638 mutant compared to wild-type OG1 strain. The deletion mutant has a growth defect when grown with aeration The mutant presented in this study is described and characterized in Vesic, D. and Kristich, C.J. 2012. A Rex-family transcriptional repressor influnces H2O2 accumulation by Enterococcus faecalis. (submitted for publication) Microarray analysis was done using RNA isolated from two independent cultures of wild-type Enterococcus faecalis OG1 and two independent cultres of Enterococcus faecalis OG1 delta-EF2638 mutant; each RNA sample was subjected to triplicate hybridization (technical replicates) . Microarrays were custom designed to investigate expression of ORFs in Enterococcus faecalis OG1RF genome. The arrays were designed based on the OG1RF annotation generated with the Rapid Annotation Using Subsystem Technology (RAST) server (Aziz et. al. 2008. BMC Genomics 9:75), as described in Frank et al (2012) Infect. Immun. 80:539. The aim was eighteen probe pairs per ORF, each of which is present in triplicate.
Project description:Analysis of changes in gene expression in Enterococcus faecalis OG1 delta-EF2638 mutant compared to wild-type OG1 strain. The deletion mutant has a growth defect when grown with aeration The mutant presented in this study is described and characterized in Vesic, D. and Kristich, C.J. 2012. A Rex-family transcriptional repressor influnces H2O2 accumulation by Enterococcus faecalis. (submitted for publication)