Project description:To investigate the gene regulatory mechanisms of RelB DNA binding function and identify regulatory mechanisms for NF-κB pro-inflammatory gene expression.
Project description:Pro-inflammatory cytokines were shown to promote growth and survival of cancerous cells. TNF induced RelA:p50 NF-κB dimer via the canonical pathway is thought to link inflammation with cancer. Integrating biochemical and computational studies we identify that deficiency of non-canonical signal transducer p100 triggers a positive autoregulatory loop, which instead perpetuates an alternate RelB:p50 containing NF-κB activity upon TNF treatment. TNF stimulated RelB:p50 dimer is sufficient for mediating NF-κB target gene-expressions and suppressing apoptotic cellular death independent of principal NF-κB subunit RelA. We further demonstrate that activating mutations in non-canonical NF-κB module deplete multiple myeloma cells of p100, thereby, provoking autoregulatory RelB:p50 activation. Finally, autoregulatory control reinforces protracted pro-survival NF-κB response, albeit comprising of RelB:p50, upon TNF priming that protects myeloma cells with dysfunctional p100 from subsequent apoptotic insults. In sum, we present evidence for positive autoregulation mediated through the NF-κB system and its potential involvement in human neoplasm.
Project description:The malignant cells of Hodgkin's lymphoma are characterized by a constitutive activation of the canonical as well as the non-canonical NF-κB signaling cascades. We carried out genome-wide localization and expression profiling experiments in the Hodgkin lymphoma cell line L1236 for the canonical and non-canonical NF-κB pathway components p65, p50 and p52, RelB, respectively. We found that the single NF-κB subunits bind to overlapping, but distinct cistromes by using consensus motifs of high similarity.
Project description:To investigate the gene regulatory mechanisms of RelB DNA binding function and identify regulatory mechanisms for NF-κB pro-inflammatory gene expression.
Project description:Background: Lymphotoxin signaling via the lymphotoxin-β receptor (LTβR) has been implicated in several biological processes, ranging from development of secondary lymphoid organs, maintenance of splenic tissue, host defense against pathogens, autoimmunity, and lipid homeostasis. The major transcription factor that is activated by LTβR crosslinking is NF-κB. Two signaling pathways have been described that result in the activation of classical p50-RelA and alternative p52-RelB NF-κB heterodimers. Results: Using microarray analysis, we investigated the transcriptional response downstream of the LTβR in mouse embryoni fibroblasts (MEF) and its regulation by the RelA and RelB subunits of NF-κB. We describe novel LTβR-responsive genes that are regulated by RelA and/or RelB. Interestingly, we found that the majority of LTβR-regulated genes require the presence of both RelA and RelB, suggesting significant crosstalk between the two NF-κB activation pathways. Gene Ontology (GO) analysis confirmed that LTβR-NF-κB target genes are predominantly involved in the regulation of immune responses. However, other biological processes, such as apoptosis/cell death, cell cycle, angiogenesis, and taxis were also regulated by LTβR signaling. Moreover, we show that activation of the LTβR inhibits the expression of a key adipogenic transcription factor, peroxisome proliferator activated receptor-γ (pparg), suggesting that LTβR signaling may interfere with adipogenic differentiation. Conclusions: Thus, microarray analysis of LTβR-stimulated fibroblasts revealed further insight into the transcriptional response of LTβR signaling and its regulation by the NF-κB family members RelA and RelB. Keywords: cell type comparison (wt vs relA-/- vs relB-/-) after genetic modification using a time course for each cell type (wt, relA-/-, relB-/-) two time points were analysed (0h as control and 10h) using 3 technical replicates resulting in 18 samples in total
Project description:NF-κB has an essential role in innate immune response and inflammation and is involved in cancer development and progression. We apply the SEC-PCP-SILAC method incorporating metabolic labeling, size exclusion chromatography and protein correlation profiling to construct a complex network of interactome rearrangement in response to NF-κB modulation in breast cancer cells. Our interaction network represents a complex insight into the dynamics of MCF-7 protein interactome associated with NF-κB pathway. Our dataset could serve as a basis for future studies characterizing role of NF-κB in breast cancer cellular pathways. This PRIDE project includes results from SILAC labeled and label-free replicates from the SEC-PCP-SILAC analysis of protein complexes in MCF-7 cells with inhibited and uninhibited NF-κB pathway, results from the immunoprecipitation experiment aimed at interaction partners of NF-κB factor RELA, analysis of total proteome after NF-κB inhibition, and results from SEC fractionation of untreated and unlabeled MCF-7 cells.
Project description:Mesenchymal stem cells (MSCs) are known to induce the conversion of activated T-cells into regulatory T-cells in vitro. The marker CD69 is a target of canonical NF-κB signaling and is transiently expressed upon activation; however, stable CD69 expression defines cells with immunoregulatory properties. Given its enormous therapeutic potential, we explored the molecular mechanisms underlying the induction of regulatory cells by MSCs. Peripheral blood CD3+ T-cells were activated and cultured in the presence or absence of MSCs. CD4+ cell mRNA expression was then characterized by microarray analysis. The drug BAY11-7082 and a siRNA against RELB were used to explore the differential roles of canonical and non-canonical NF-κB signaling, respectively. Flow cytometry and real-time PCR were used for analyses. Genes with immunoregulatory functions, CD69 and non-canonical NF-κB subunits (RELB and NFKB2) were all expressed at higher levels in lymphocytes co-cultured with MSCs. The frequency of CD69+ cells among lymphocytes cultured alone progressively decreased after activation. In contrast, the frequency of CD69+ cells increased significantly following activation in lymphocytes co-cultured with MSCs. Inhibition of canonical NF-κB signaling by BAY immediately following activation blocked the induction of CD69; however, inhibition of canonical NF-κB signaling on the 3rd day further induced the expression of CD69. Furthermore, late expression of CD69 was inhibited by RELB siRNA. These results indicate that the canonical NF-κB pathway controls the early expression of CD69 after activation; however, in an immunoregulatory context, late and sustained CD69 expression is promoted by the non-canonical pathway and is inhibited by canonical NF-κB signaling. In order to study the molecular basis by which Multipotent Mesenchymal Stromal/Stem Cells (MSC) exert their immune regulatory function, immunomagnetically purified CD3+ T-cells from the peripheral blood of 3 individuals were activated and cultured in the presence or absence of MSCs. Following 5 days, CD4+ and CD8+ T-cells were further immunomagnetically selected and their gene expression profiles were obtained by microarrays and compared. Paired samples from 3 individuals were used for this analysis.
Project description:To elucidate the mechanisms responsible for cytoprotective effects of tumor necrosis factor receptor activated factor 2 (TRAF2) in the heart, we employed genetic gain and loss of function studies ex vivo and in vivo in mice with cardiac restricted overexpression of TRAF2 (Myh6-TRAF2LC). Crossing Myh6-TRAF2LC mice with mice lacking canonical signaling (Myh6-TRAF2LC/Myh6-IκBαΔN) abrogated the cytoprotective effects of TRAF2 ex vivo. In contrast, inhibiting the JAK/STAT pathway did not abrogate the cytoprotective effects of TRAF2. Transcriptional profiling of wild-type, Myh6-TRAF2LC, Myh6-TRAF2LC/Myh6-IκBαΔN hearts suggested that the non-canonical NF-κB signaling pathway was upregulated in the Myh6-TRAF2LC hearts. Western blotting and ELISA for the NF-κB family proteins p50, p65, p52 and RelB on nuclear and cytoplasmic extracts from naïve 12 week old wild-type, Myh6-TRAF2LC and Myh6-TRAF2LC/Myh6-IκBαΔN mouse hearts showed increased expression levels and increased DNA binding of p52 and RelB, which are NF-κB family members, whereas there was no increase in expression nor DNA binding of the p50 and p65 subunits. Crossing Myh6-TRAF2LCmice with RelB-/+mice (Myh6-TRAF2LC/RelB-/+) attenuated the cytoprotective effects of TRAF2 ex vivo and in vivo. Viewed together, these results suggest that cross-talk between the canonical and non-canonical NF-κB signaling pathways is required for mediating the cytoprotective effects of TRAF2.
Project description:Background: Lymphotoxin signaling via the lymphotoxin-β receptor (LTβR) has been implicated in several biological processes, ranging from development of secondary lymphoid organs, maintenance of splenic tissue, host defense against pathogens, autoimmunity, and lipid homeostasis. The major transcription factor that is activated by LTβR crosslinking is NF-κB. Two signaling pathways have been described that result in the activation of classical p50-RelA and alternative p52-RelB NF-κB heterodimers. Results: Using microarray analysis, we investigated the transcriptional response downstream of the LTβR in mouse embryoni fibroblasts (MEF) and its regulation by the RelA and RelB subunits of NF-κB. We describe novel LTβR-responsive genes that are regulated by RelA and/or RelB. Interestingly, we found that the majority of LTβR-regulated genes require the presence of both RelA and RelB, suggesting significant crosstalk between the two NF-κB activation pathways. Gene Ontology (GO) analysis confirmed that LTβR-NF-κB target genes are predominantly involved in the regulation of immune responses. However, other biological processes, such as apoptosis/cell death, cell cycle, angiogenesis, and taxis were also regulated by LTβR signaling. Moreover, we show that activation of the LTβR inhibits the expression of a key adipogenic transcription factor, peroxisome proliferator activated receptor-γ (pparg), suggesting that LTβR signaling may interfere with adipogenic differentiation. Conclusions: Thus, microarray analysis of LTβR-stimulated fibroblasts revealed further insight into the transcriptional response of LTβR signaling and its regulation by the NF-κB family members RelA and RelB. Keywords: cell type comparison (wt vs relA-/- vs relB-/-) after genetic modification using a time course