Project description:In a prior report, we observed two distinct lung microbiomes in healthy subjects that we termed â??pneumotypesâ??: pneumotypeSPT, characterized by high bacterial load and supraglottic predominant taxa (SPT) such as the anaerobes Prevotella and Veillonella; and pneumotypeBPT, with low bacterial burden and background predominant taxa (BPT) found in the saline lavage and bronchoscope. Here, we determined the prevalence of these two contrasting lung microbiome types, in a multi-center study of healthy subjects. We confirmed that a lower airway microbiome enriched with upper airway microbes (pneumotypeSPT) was present in ~45% of healthy individuals. Cross-sectional Multicenter cohort. BAL of 49 healthy subjects from three cohort had their lower airway microbiome assessed by 16S rDNA sequencing and microbial gene content (metagenome) was computationally inferred from taxonomic assignments. The amplicons from total 100 samples are barcoded; the barcode and other clinical characteristics (e.g. inflammatory biomarkers and metabolome data) for each sample are provided in the 'Pneumotype.sep.Map.A1.txt' file.
Project description:Sub-Saharan Africa represents 69% of the total number of individuals living with HIV infection worldwide and 72% of AIDS deaths globally. Pulmonary infection is a common and frequently fatal complication, though little is known regarding the lower airway microbiome composition of this population. Our objectives were to characterize the lower airway microbiome of Ugandan HIV-infected patients with pneumonia, to determine relationships with demographic, clinical, immunological, and microbiological variables and to compare the composition and predicted metagenome of these communities to a comparable cohort of patients in the US (San Francisco). Bronchoalveolar lavage samples from a cohort of 60 Ugandan HIV-infected patients with acute pneumonia were collected. Amplified 16S ribosomal RNA was profiled and aforementioned relationships examined. Ugandan airway microbiome composition and predicted metagenomic function were compared to US HIV-infected pneumonia patients. Among the most common bacterial pulmonary pathogens, Pseudomonas aeruginosa was most prevalent in the Ugandan cohort. Patients with a richer and more diverse airway microbiome exhibited lower bacterial burden, enrichment of members of the Lachnospiraceae and sulfur-reducing bacteria and reduced expression of TNF-alpha and matrix metalloproteinase-9. Compared to San Franciscan patients, Ugandan airway microbiome were significantly richer, and compositionally distinct with predicted metagenomes that encoded a multitude of distinct pathogenic pathways e.g secretion systems. Ugandan pneumonia-associated airway microbiome is compositionally and functionally distinct from those detected in comparable patients in developed countries, a feature which may contribute to adverse outcomes in this population. Please note that the data from the comparable cohort of patients in the USUS data was published as supplemental material of PMID: 22760045 but not submitted to GEO The 'patient_info.txt' contains 12 clinical, 7 immunological and 3 microbiological variables for each patient. The G2 PhyloChip microarray platform (commercially available from Second Genome, Inc.) was used to profile bacteria in lower airway samples from 60 subjects
Project description:Background: The soil environment is responsible for sustaining most terrestrial plant life on earth, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere and how it responds to agricultural management such as crop rotations and soil tillage will be vital for improving global food production. Methods: The rhizosphere soils of wheat and chickpea growing under + and - decaying root were collected for metagenomics sequencing. A gene catalogue was established by de novo assembling metagenomic sequencing. Genes abundance was compared between bulk soil and rhizosphere soils under different treatments. Conclusions: The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the microbiome from decaying root in determining the metagenome of developing root systems, which is fundamental to plant growth, since roots preferentially inhabit previous root channels. Modifications in root microbial function through soil management, can ultimately govern plant health, productivity and food security.
Project description:Aging is associated with declining immunity and inflammation as well as alterations in the gut microbiome with a decrease of beneficial microbes and increase in pathogenic ones. The aim of this study was to investigate aging associated gut microbiome in relation to immunologic and metabolic profile in a non-human primate (NHP) model. 12 old (age>18 years) and 4 young (age 3-6 years) Rhesus macaques were included in this study. Immune cell subsets were characterized in PBMC by flow cytometry and plasma cytokines levels were determined by bead based multiplex cytokine analysis. Stool samples were collected by ileal loop and investigated for microbiome analysis by shotgun metagenomics. Serum, gut microbial lysate and microbe-free fecal extract were subjected to metabolomic analysis by mass-spectrometry. Our results showed that the old animals exhibited higher inflammatory biomarkers in plasma and lower CD4 T cells with altered distribution of naïve and memory T cell maturation subsets. The gut microbiome in old animals had higher abundance of Archaeal and Proteobacterial species and lower Firmicutes than the young. Significant enrichment of metabolites that contribute to inflammatory and cytotoxic pathways was observed in serum and feces of old animals compared to the young. We conclude that aging NHP undergo immunosenescence and age associated alterations in the gut microbiome that has a distinct metabolic profile.
Project description:Sub-Saharan Africa represents 69% of the total number of individuals living with HIV infection worldwide and 72% of AIDS deaths globally. Pulmonary infection is a common and frequently fatal complication, though little is known regarding the lower airway microbiome composition of this population. Our objectives were to characterize the lower airway microbiome of Ugandan HIV-infected patients with pneumonia, to determine relationships with demographic, clinical, immunological, and microbiological variables and to compare the composition and predicted metagenome of these communities to a comparable cohort of patients in the US (San Francisco). Bronchoalveolar lavage samples from a cohort of 60 Ugandan HIV-infected patients with acute pneumonia were collected. Amplified 16S ribosomal RNA was profiled and aforementioned relationships examined. Ugandan airway microbiome composition and predicted metagenomic function were compared to US HIV-infected pneumonia patients. Among the most common bacterial pulmonary pathogens, Pseudomonas aeruginosa was most prevalent in the Ugandan cohort. Patients with a richer and more diverse airway microbiome exhibited lower bacterial burden, enrichment of members of the Lachnospiraceae and sulfur-reducing bacteria and reduced expression of TNF-alpha and matrix metalloproteinase-9. Compared to San Franciscan patients, Ugandan airway microbiome were significantly richer, and compositionally distinct with predicted metagenomes that encoded a multitude of distinct pathogenic pathways e.g secretion systems. Ugandan pneumonia-associated airway microbiome is compositionally and functionally distinct from those detected in comparable patients in developed countries, a feature which may contribute to adverse outcomes in this population. Please note that the data from the comparable cohort of patients in the USUS data was published as supplemental material of PMID: 22760045 but not submitted to GEO The 'patient_info.txt' contains 12 clinical, 7 immunological and 3 microbiological variables for each patient.
Project description:Opioid analgesics are frequently prescribed in the United States and worldwide. However, serious side effects such as addiction, immunosuppression and gastrointestinal symptoms limit long term use. In the current study using a chronic morphine-murine model a longitudinal approach was undertaken to investigate the role of morphine modulation of gut microbiome as a mechanism contributing to the negative consequences associated with opioids use. The results revealed a significant shift in the gut microbiome and metabolome within 24 hours following morphine treatment when compared to placebo. Morphine induced gut microbial dysbiosis exhibited distinct characteristic signatures profiles including significant increase in communities associated with pathogenic function, decrease in communities associated with stress tolerance. Collectively, these results reveal opioids-induced distinct alteration of gut microbiome, may contribute to opioids-induced pathogenesis. Therapeutics directed at these targets may prolong the efficacy long term opioid use with fewer side effects.
Project description:Pancreatic cancer is the 3rd most prevalent cause of cancer related deaths in United states alone, with over 55000 patients being diagnosed in 2019 alone and nearly as many succumbing to it. Late detection, lack of effective therapy and poor understanding of pancreatic cancer systemically contributes to its poor survival statistics. Obesity and high caloric intake linked co-morbidities like type 2 diabetes (T2D) have been attributed as being risk factors for a number of cancers including pancreatic cancer. Studies on gut microbiome has shown that lifestyle factors as well as diet has a huge effect on the microbial flora of the gut. Further, modulation of gut microbiome has been seen to contribute to effects of intensive insulin therapy in mice on high fat diet. In another study, abnormal gut microbiota was reported to contribute to development of diabetes in Db/Db mice. Recent studies indicate that microbiome and microbial dysbiosis plays a role in not only the onset of disease but also in its outcome. In colorectal cancer, Fusobacterium has been reported to promote therapy resistance. Certain intra-tumoral bacteria have also been shown to elicit chemo-resistance by metabolizing anti-cancerous agents. In pancreatic cancer, studies on altered gut microbiome have been relatively recent. Microbial dysbiosis has been observed to be associated with pancreatic tumor progression. Modulation of microbiome has been shown to affect response to anti-PD1 therapy in this disease as well. However, most of the studies in pancreatic cancer and microbiome have remained focused om immune modulation. In the current study, we observed that in a T2D mouse model, the microbiome changed significantly as the hyperglycemia developed in these animals. Our results further showed that, tumors implanted in the T2D mice responded poorly to Gemcitabine/Paclitaxel (Gem/Pac) standard of care compared to those in the control group. A metabolomic reconstruction of the WGS of the gut microbiota further revealed that an enrichment of bacterial population involved in drug metabolism in the T2D group.
Project description:On going efforts are directed at understanding the mutualism between the gut microbiota and the host in breast-fed versus formula-fed infants. Due to the lack of tissue biopsies, no investigators have performed a global transcriptional (gene expression) analysis of the developing human intestine in healthy infants. As a result, the crosstalk between the microbiome and the host transcriptome in the developing mucosal-commensal environment has not been determined. In this study, we examined the host intestinal mRNA gene expression and microbial DNA profiles in full term 3 month-old infants exclusively formula fed (FF) (n=6) or breast fed (BF) (n=6) from birth to 3 months. Host mRNA microarray measurements were performed using isolated intact sloughed epithelial cells in stool samples collected at 3 months. Microbial composition from the same stool samples was assessed by metagenomic pyrosequencing. Both the host mRNA expression and bacterial microbiome phylogenetic profiles provided strong feature sets that clearly classified the two groups of babies (FF and BF). To determine the relationship between host epithelial cell gene expression and the bacterial colony profiles, the host transcriptome and functionally profiled microbiome data were analyzed in a multivariate manner. From a functional perspective, analysis of the gut microbiota's metagenome revealed that characteristics associated with virulence differed between the FF and BF babies. Using canonical correlation analysis, evidence of multivariate structure relating eleven host immunity / mucosal defense-related genes and microbiome virulence characteristics was observed. These results, for the first time, provide insight into the integrated responses of the host and microbiome to dietary substrates in the early neonatal period. Our data suggest that systems biology and computational modeling approaches that integrate “-omic” information from the host and the microbiome can identify important mechanistic pathways of intestinal development affecting the gut microbiome in the first few months of life. KEYWORDS: infant, breast-feeding, infant formula, exfoliated cells, transcriptome, metagenome, multivariate analysis, canonical correlation analysis 12 samples, 2 groups
Project description:In this study, we assessed lower airway microbiome from a cohort of patients to determine whether specific microbiome taxa correlate with with specific metabolic activities. In a subset of 12 patients, transcriptomic expression were analyzed to compare host mucosa immune response We collected peripheral airway brushings from the 12 subjects whose lung microbiome were analyzed; Total RNA were obtained from the peripheral airway epithelium.