Project description:We reported the gene expression profile of T47D cells treated with the organic extract of Particulate matter 2.5 (PM2.5) sampled next to the municipal solid waste incineration plant of Bologna city. Based on a air pollution distribution model that takes the incinaration plant as point source of emission, two sites were chosen to sample particulate matter near incineration plant: "FrulloEst" representing the maximum effect of the incineration plant, "Calamosco" representing the negative control of "FrulloEst" (minimun effect of incineration plant, same effect of other air pollution fonts). Another site, "Giardini Margherita", is chosen to sample the urban background air pollution. for each site sample collection was performed in winter and in summer season.
Project description:This work aimed at studying the photochemical treatment of a landfill leachate using ultraviolet light, hydrogen peroxide, and ferrous or ferric ions, in a batch recycle photoreactor. The effect of inorganic carbon presence, pH, initial H2O2 amount (0-9990 mg L-1) as well as Fe(II) (200-600 ppm) and Fe(III) (300-700 ppm) concentrations on the total carbon removal and color change was studied. Prior to the photochemical treatment, a pretreatment process was applied; inorganic nitrogen and inorganic carbon were removed by means of air stripping and initial pH regulation, respectively. The leachate sent subsequently for photochemical treatment was free of inorganic carbon and contained only organic carbon with concentration 1200±100 mg L-1 at pH 5.1-5.3. The most favorable concentrations of H2O2 and ferric ions for carbon removal were 6660 mg L-1 and 400 ppm, respectively. Adjusting the initial pH value in the range of 2.2-5.3 had a significant effect on the organic carbon removal. The photo-Fenton-like process was more advantageous than the photo-Fenton one for leachate treatment. By applying the most favorable operating conditions, 88.7% removal of total organic carbon, 100% removal of total inorganic carbon, 96.5% removal of total nitrogen, and 98.2% color removal were achieved.
Project description:This work presents the first case of SARS-CoV-2 RNA detection in leachate collected from a transfer station in the city of São Paulo, Brazil. After calibration of the viral detection method already used for wastewater samples with a pilot leachate sample and virus fragments in laboratory, twelve polyethylene glycol concentrated leachates samples were tested by RT-qPCR. The results confirmed the presence of N1 gene in 9 of the 12 analyzed samples between epidemiological weeks 33 and 38 of the year 2021 (08/15/2021 to 09/19/2021). The occurrence of the N2 gene was only observed in 5 of the 12 samples. The concentration values for N1 and N2 genes varied between 3.1 and 4.6 log10.GC·L-1, which are values close to those measured in sanitary wastewater. This method showed to be a promising procedure to verify the presence of viral RNA in municipal solid waste leachate, being especially useful where there is no treatment system and sanitation infrastructure, which makes the conventional wastewater surveillance unfeasible.