Project description:IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Though regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. In order to investigate the role of IRAK-4 kinase function in vivo, knock-in mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase deficient IRAK-4 protein (IRAK-4 KD). Analysis of embryonic fibroblasts and macrophages obtained from IRAK-4 KD mice with a number of experimental techniques demonstrated that they greatly lack responsiveness to stimulation with IL-1b or a Toll-like receptor 7 (TLR7) agonist. One of the techniques used, microarray analysis, identified IRAK-4 kinase-dependent IL-1b response genes in mouse embryonic fibroblasts and revealed that the induction of IL-1b-responsive mRNAs was largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in IL-1R/TLR7-mediated induction of inflammatory responses. Experiment Overall Design: The response of mouse embryonic fibroblasts from WT and IRAK4 kinase dead animals to stimulation with IL-1b at two time points was determined. There were 12 samples in total, 6 from WT and 6 from IRAK4 kinase dead cells; for each strain there were 3 conditions: growth for 4 hours without stimulation (the strain-specific control), growth for 1 hour with stimulation, and growth for 4 hours with stimulation; for each condition there were two biological replicates.
Project description:Targeting the desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) holds promise to augment the effect of chemotherapy, but so far success remains limited in the clinic. Furthermore, preclinical mouse models suggest that near-depletion of cancer-associated fibroblasts (CAFs) carries a risk of accelerating PDAC progression. These concerns underscore the need to concurrently target the key signaling mechanisms that drive the malignant attributes of both CAFs and PDAC cells. We previously reported that inhibition of Interleukin-1 Receptor Associated Kinase 4 (IRAK4) suppresses NF-kB activity and promotes chemotherapy response in PDAC cells. In this study, we show that CAFs in PDAC tumors robustly express activated IRAK4 and NF-kb. The role of IRAK4 and NF-kB in PDAC CAFs has not been reported, and should be clarified before advancing IRAK4 inhibitors to the clinic. Using shRNAs and small molecular inhibitors, we found that IRAK4 is a key driver of NF-kB activity in CAFs. We showed that CAFs utilizes IRAK4 to drive tumor fibrosis, support PDAC cells proliferation, survival and chemoresistance in vitro and in vivo. From cytokine array analysis of CAFs and microarray analysis of PDAC cells, we identified IL-1b as a key cytokine that activates IRAK4 in CAFs. Targeting IRAK4 or IL-1b renders PDAC tumors less fibrotic and more sensitive to gemcitabine in vivo. Moreover, high IL-1b expression by immunohistochemistry in PDAC stroma is strongly associated with poor overall survival. Together, our studies established a tumor-stroma IL-1b-IRAK4 feedforward circuitry that can be therapeutically disrupted to render chemotherapy more effective in PDAC.
Project description:IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Though regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. In order to investigate the role of IRAK-4 kinase function in vivo, âknock-inâ mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase deficient IRAK-4 protein (IRAK-4 KD). Analysis of bone marrow macrophages obtained from WT and IRAK-4 KD mice with a number of experimental techniques demonstrated that the IRAK-4 KD cells greatly lack responsiveness to stimulation with the Toll-like receptor 4 (TLR4) agonist LPS. One of the techniques used, microarray analysis, identified IRAK-4 kinase-dependent LPS response genes and revealed that the induction of LPS-responsive mRNAs was largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in TLR4-mediated induction of inflammatory responses. Experiment Overall Design: The response of mouse bone marrow macrophages from WT and IRAK4 kinase dead animals to stimulation with LPS at two time points was determined. There were 12 samples in total, 6 from WT and 6 from IRAK4 kinase dead cells; for each strain there were 3 conditions: growth for 4 hours without stimulation (the strain-specific control), growth for 1 hour with stimulation, and growth for 4 hours with stimulation; for each condition there were two biological replicates.
Project description:IRAK-4 is an essential component of the signal transduction complex downstream of the IL-1- and Toll-like receptors. Though regarded as the first kinase in the signaling cascade, the role of IRAK-4 kinase activity versus its scaffold function is still controversial. In order to investigate the role of IRAK-4 kinase function in vivo, ‘knock-in’ mice were generated by replacing the wild type IRAK-4 gene with a mutant gene encoding kinase deficient IRAK-4 protein (IRAK-4 KD). Analysis of embryonic fibroblasts and macrophages obtained from IRAK-4 KD mice with a number of experimental techniques demonstrated that they greatly lack responsiveness to stimulation with IL-1b or a Toll-like receptor 7 (TLR7) agonist. One of the techniques used, microarray analysis, identified IRAK-4 kinase-dependent IL-1b response genes in mouse embryonic fibroblasts and revealed that the induction of IL-1b-responsive mRNAs was largely ablated in IRAK-4 KD cells. In summary, our results suggest that IRAK-4 kinase activity plays a critical role in IL-1R/TLR7-mediated induction of inflammatory responses. Keywords: genetic modification, strain comparison, cell stimulation, time course, inflammatory response
Project description:IRAK4 kinase plays a critical role in innate immune responses and inflammation by modulating the TLR/IL-1R signaling pathway, yet the mechanism by which it regulates downstream pathways and transcription factors to induce inflammatory cytokines is unclear. IRAK4 can mediate signaling events by mechanisms both dependent and independent of its kinase activity. Understanding this regulation is important for deciphering the role of IRAK4 and for the development of treatments for inflammatory diseases and cancer. Through transcriptomic and biochemical analyses of primary human monocytes treated with a highly potent and selective inhibitor of IRAK4, we show that IRAK4 kinase activity controls the transcription factor IRF5 which in turn induces inflammatory cytokine and type I interferon transcription in myeloid cells. We also show that IRAK4 kinase activity does not control activation of NF-κB. Following TLR stimulation, translocation of IRF5, but not NF-κB, to the nucleus in human monocytes is abolished by IRAK4 kinase inhibition. In addition, binding of IRF5, but not NF-κB p65, to promoters of inflammatory target genes (TNF-α and IP10) is blocked with an IRAK4 kinase inhibitor. IKKβ, a known activator of IRF5, is phosphorylated in response to TLR mediated signaling, and inhibition of IRAK4 kinase blocks IKKβ phosphorylation. Pharmacological inhibition of IKKβ and TAK1, the upstream kinase of IKKβ, in human monocytes blocks IL-1, IL-6 and TNF-α cytokine production, as well as IRF5 translocation to the nucleus. Taken together, our data suggest a novel mechanism by which IRAK4 kinase activity regulates TAK1 and IKKβ activation, leading to the translocation of IRF5 and induction of inflammatory cytokines in human monocytes.
Project description:Exciting discoveries related to IL-1R/TLR signaling in development of atherosclerosis plaque have triggered intense interest in the molecular mechanisms by which innate immune signaling modulates the onset and development of atherosclerosis. Previous studies have clearly shown the definitive role of proinflammatory cytokine IL-1 in the development of atherosclerosis. Recent studies have provided direct evidence supporting a link between innate immunity and atherogenesis. While it is still controversial about whether infectious pathogens contribute to cardiovascular diseases, direct genetic evidence indicates the importance of IL-1R/TLR signaling in atherogenesis. In this study, we examined the role of IRAK4 kinase activity in modified LDL-mediated signaling using bone marrow-derived macrophage as well as in vivo model of atherosclerosis. First, we found that the IRAK4 kinase activity was required for modified LDL-induced NFκB activation and expression of a subset of proinflammatory genes, but not for the activation of MAPKs in bonemarrow-derived macrophage. IRAK4 kinase inactive knock-in (IRAK4KI) mice were bred onto ApoE-/- mice to generate IRAK4KI/ApoE-/- mice. Importantly, the aortic sinus lesion formation was impaired in IRAK4KI/ApoE-/- mice compared to that in ApoE-/- mice. Furthermore, proinflammatory cytokine production was reduced in the aortic sinus region of IRAK4KI/ApoE-/- mice compared to that in ApoE-/- mice. Taken together, our results indicate that the IRAK4 kinase plays an important role in modified LDL-mediated signaling and the development of atherosclerosis, suggesting that pharmacological inhibition of IRAK4 kinase activity might be a feasible approach in the development of anti-atherosclerosis drugs. To identify global changes in gene expression, we examined gene expression profiles of macrophages from wild-type and IRAK4 kinase-inactive knock-in mice in response to acLDL stimulation using the Illumina microarray with probes for 23,000 transcripts. Bone marrow-derived macrophages from wild-type and IRAK4 kinase-inactive knock-in mice were treated with acLDL for 24 hours.
Project description:Analyses of IL-1b-induced transcriptome in various skin-relevant cell types (keratinocytes, dermal fibroblasts, dermal microvascular endothelial cells, mononuclear immune cells) by RNASeq method disclosed an overlap of upregulated molecules among the different cell types. Matching cellular IL-1 receptor levels, dermal fibroblasts showed both the strongest and broadest IL-1b response.
Project description:There is accumulating evidence to indicate that long non-coding RNAs (lncRNAs) are important regulators of the inflammatory response. In this report, we have employed next generation sequencing to identify 14 lncRNAs that are differentially expressed in human lung fibroblasts following the induction of inflammation using interleukin-1b (IL-1b). Knockdown of the two most highly expressed lncRNAs, IL7AS and MIR3142HG, showed that IL7AS negatively regulated IL-6 release whilst MIR3142HG was required for IL-8 and CCL2 release. Parallel studies in fibroblasts derived from patients with idiopathic pulmonary fibrosis showed similar increases in IL7AS levels, that also negatively regulate IL-6 release. In contrast, IL-1b-induced MIR3142HG expression was reduced by 8-fold in IPF fibroblasts, with the consequence being that MIR3142 knockdown showed no effect upon IL-8 and CCL2 release. In summary, we have catalogued those lncRNAs that are differential expression following IL-1b-activation of human lung fibroblasts and shown that these regulate the inflammatory response.
Project description:IL-1R associated kinase-4 (IRAK4) is a key enzyme required for activation of the common Toll-like Receptor (TLR) signaling cascade, which results in the transcription of inflammatory and immunity genes. IRAK-4 deficiency has recently been described as a rare form of innate immunodeficiency. Patients present with pyogenic bacterial infections and bacteraemia, particularly with Gram+ Streptococcus pneumoniae, and isolated PBMC from these patients fail to produce inflammatory cytokines in response to TLR agonists. We embarked on this study for several purposes: (1) to identify defective gene response resulting from IRAK4-deficiency that are responsible for the patients' susceptibility to infection by particular bacteria (2) to identify genetic responses that confer relatively normal immunity in these patients despite having a defect in such a critical component of the innate immune system (3) to gain understanding of the transcriptional regulation of inflammatory genes (4) to gain insight into TLR signal transduction pathways, in particular, the role of IRAK4 in the TLR2 and TLR4 pathways initiated by Gram+ and Gram- bacterial components respectively. Transcriptional responses to TNF-alpha, IL-1beta, peptidoglycan or lipopolysaccharide (TLR2/4 agonists) were evaluated at 4 hrs in peripheral blood monocytes (PBM) from the patient bearing the IRAK4 Q293X mutation compared to PBM from 5 healthy individuals.