Project description:The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide novel insights into NVU formation and function and offer new avenues for investigating diseases involving white matter defects and vascular abnormalities. The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide novel insights into NVU formation and function and offer new avenues for investigating diseases involving white matter defects and vascular abnormalities. The neurovascular unit (NVU) is a complex multicellular structure that helps maintain cerebral homeostasis and blood-brain barrier (BBB) integrity. While extensive evidence links NVU alterations to cerebrovascular diseases and neurodegeneration, the underlying molecular mechanisms remain unclear. Here, we use zebrafish embryos carrying a mutation in Scavenger Receptor B2, a highly conserved endolysosomal protein expressed predominantly in Radial Glia Cells (RGCs), to investigate the interplay among different NVU components. Through live imaging and genetic manipulations, we demonstrate that compromised acidification of the endolysosomal compartment in mutant RGCs leads to impaired Notch3 signaling, thereby inducing excessive neurogenesis and reduced glial differentiation. We further demonstrate that alterations to the neuron/glia balance result in impaired VEGF and Wnt signaling, leading to severe vascular defects, hemorrhages, and a leaky BBB. Altogether, our findings provide novel insights into NVU formation and function and offer new avenues for investigating diseases involving white matter defects and vascular abnormalities.
Project description:Since the discovery of radial glia as the source of neurons, their heterogeneity in regard to neurogenesis has been described by clonal and time-lapse analysis in vitro. However, the molecular determinants specifying neurogenic radial glia differently from radial glia that mostly self-renew remain ill-defined. Here, we isolated two radial glial subsets that co-exist at mid-neurogenesis in the developing cerebral cortex and their immediate progeny. While one subset generates neurons directly, the other is largely non-neurogenic but also gives rise to Tbr2-positive basal precursors, thereby contributing indirectly to neurogenesis. Isolation of ; these distinct radial glia subtypes allowed determining interesting differences in their transcriptome. These transcriptomes were also strikingly different from the transcriptome of radial glia isolated at the end of neurogenesis. This analysis therefore identifies, for the first time, the lineage origin of basal progenitors and the molecular differences of this lineage in comparison to directly neurogenic and gliogenic radial glia. Experiment Overall Design: Comparison of radial glial subtypes
Project description:Organoids (ORG) are increasingly used as models of cerebral cortical development. Here we compared transcriptome and cellular phenotypes between ORG and monolayers (MON) generated in parallel from three biologically distinct iPSC lines. Multiple read-outs revealed increased proliferation in MON, which was caused by increased integrin signaling. MON also exhibited altered radial glia polarity, global suppression of Notch signaling and impaired generation of intermediate progenitors (INP), outer radial glia (oRG) and cortical neurons, which were all partially reversed by reaggregation of dissociated cells into organoids. Network analyses revealed co-clustering of cell adhesion, Notch- related transcripts their transcriptional regulators in a module strongly downregulated in MON. The data suggest that cortical ORG, with respect to MON, initiates more efficient Notch signaling in ventricular radial glia owing to preserved cell adhesion, resulting in subsequent generation of INP and oRG, in a sequence that better recapitulates the evolution of the cortical ontogenetic process.
Project description:<p>We sought to characterize cellular heterogeneity in the human cerebral cortex at a molecular level during cortical neurogenesis. We captured single cells and generated sequencing libraries using the C1TM Single-Cell Auto Prep System (Fluidigm), the SMARTer Ultra Low RNA Kit (Clontech), and the Nextera XT DNA Sample Preparation Kit (Illumina). We performed unbiased clustering of the single cells and further examined transcriptional variation among cell groups interpreted as radial glia. Within this population, the major sources of variation related to cell cycle progression and the stem cell niche from which radial glia were captured. We found that outer subventricular zone radial glia (oRG cells) preferentially express genes related to extracellular matrix formation, migration, and stemness, including <i>TNC</i>, <i>PTPRZ1</i>, <i>FAM107A</i>, <i>HOPX</i>, and <i>LIFR</i> and related this transcriptional state to the position, morphology, and cell behaviors previously used to classify the cell type. Our results suggest that oRG cells maintain the subventricular niche through local production of growth factors, potentiation of growth factor signals by extracellular matrix proteins, and activation of self-renewal pathways, thereby contributing to the developmental and evolutionary expansion of the human neocortex.</p> <p>For <b>study version 2</b>, we have updated this data set to include additional primary cells that we infer to represent microglia, endothelial cells, and immature astrocytes, as well as additional cells from the developing neural retina, and from iPS-cell derived cerebral organoids. The genes distinguishing these cell populations may reveal biological processes supporting the diverse functions of these cell types as well as vulnerabilities of specific cell types in human genetic diseases and in viral infections.</p> <p>For <b>study version 3</b>, we have updated the data set to include additional primary cells, including those published in Nowakowski, et al., Science 2017: "Spatiotemporal Gene Expression Trajectories Reveal Developmental Hierarchies of the Human Cortex" (<i>in press</i>)</p>
Project description:Zebrafish display widespread and pronounced adult neurogenesis, which is fundamental for their regeneration capability after central nervous system injury. However, the cellular identity and the biological properties of adult newborn neurons are elusive for most brain areas. Here, we used short-term lineage tracing of radial glia progeny to prospectively isolate newborn neurons from the her4.1+ radial glia lineage in the homeostatic adult forebrain. Transcriptome analysis of radial glia, newborn neurons and mature neurons using single cell sequencing identified distinct transcriptional profiles including novel markers for each population. Specifically, we detected 2 separate newborn neuron types, which showed diversity of cell fate commitment and location. Further analyses showed homology of these cell types to neurogenic cells in the mammalian brain, identified neurogenic commitment in proliferating radial glia and indicated that glutamatergic projection neurons fate are generated in the adult zebrafish telecephalon. Thus, we prospectively isolated adult newborn neurons from the adult zebrafish forebrain, identified markers for newborn and mature neurons in the adult brain, revealed intrinsic heterogeneity among adult newborn neurons and their homology to mammalian adult neurogenic cell types.
Project description:A massively expanded outer subventricular zone (OSVZ) in the primate and human has been proposed for generating majority of neocortical neurons, which consists of basally located radial glia cells. Previous studies with various strategies have tried to recognize genes specifically expressed in those cells; however, the molecular and cellular features of these cells still remain uncertain. By profiling gene expression across single cells isolated from cellular anatomy location and subtype sorting, we identified a primate-specific gene TMEM14B as a novel marker for basally located radial glia. Expression of TMEM14B induced dramatic increase in the number of radial glial and OSVZ region. Finally, we found that OSVZ progenitor’s extensive proliferative potential was up regulated through IQGAP1 phosphorylation and nuclear translocation, and remarkably, led to the gyrification in postnatal mouse. These results highlight that evolutionary expansion promoted by primate-specific genes enabling the evolutionary expansion and folding of the human neocortex.
Project description:Since the discovery of radial glia as the source of neurons, their heterogeneity in regard to neurogenesis has been described by clonal and time-lapse analysis in vitro. However, the molecular determinants specifying neurogenic radial glia differently from radial glia that mostly self-renew remain ill-defined. Here, we isolated two radial glial subsets that co-exist at mid-neurogenesis in the developing cerebral cortex and their immediate progeny. While one subset generates neurons directly, the other is largely non-neurogenic but also gives rise to Tbr2-positive basal precursors, thereby contributing indirectly to neurogenesis. Isolation of these distinct radial glia subtypes allowed determining interesting differences in their transcriptome. These transcriptomes were also strikingly different from the transcriptome of radial glia isolated at the end of neurogenesis. This analysis therefore identifies, for the first time, the lineage origin of basal progenitors and the molecular differences of this lineage in comparison to directly neurogenic and gliogenic radial glia.
Project description:A subgroup of Posterior fossa ependymomas show reduced H3K27me3 are more invasive, exhibit poor prognosis and epigenetically deregulated genes converge on radial glial factors, suggesting developing cerebellar radial glia as candidate cells-of-origin.
Project description:Cerebral organoids exhibit broad regional heterogeneity accompanied by limited cortical cellular diversity under a variety of derivation methods, suggesting inadequate patterning of early neural stem cell (NSC) starting populations. Here we show that a short combined Dual SMAD/WNT inhibition course during early organoid establishment is sufficient for yielding robust and lasting cortical identity with efficient suppression of non-cortical fates in organoid NSCs. In contrast, other widely used methods are inconsistent in their cortical specification capacity. Furthermore, combined inhibition selectively enriches for outer radial glia (oRG) cells in organoids that demarcate well-defined outer sub-ventricular (oSVZ)-like regions. Finally, combined inhibition enables superior NSC radial organization, further facilitates the generation of molecularly distinct deep and upper cortical layer neurons, and uncovers cortex-specific microcephaly defects. Thus, combined inhibition is critical for establishing a rich cortical cell repertoire, for enabling fundamental cytoarchitectural features of cortical development, and for meaningful disease modeling.
Project description:Astroblastoma (AB) is an unusual brain tumor of unknown origin. We performed an integrated clinicogenomic analysis of 36 AB-like tumors. Lesions with MN1-BEND2 fusions demonstrated decreased promoter methylation and increased expression of IGF2-H19 and DLK1-DIO3 imprinted region genes. They also relatively overexpressed genes highly expressed during fetal brain development prior to 25 post-conception weeks (pcw), including genes enriched in ventricular zone radial glia (vRG), and generally presented in young children. Other tumors highly expressed MAP kinase pathway, PI3K pathway and X-inactivation escape genes. These and a third group of tumors tended to occur in young adults and showed enriched expression of outer radial glia (oRG) and truncated radial glia (tRG) genes, and genes highly expressed after 25 pcw. Many of the latter are involved in axonal migration or synaptic plasticity and are implicated in autism, schizophrenia and other cognitive disorders. Findings suggest that AB-like tumors arise in the context of epigenetic and genetic changes in neural progenitors during fetal and later brain development: early ependymal tumors with MN1-BEND2 fusions (EET-MN1) from vRG-derived progenitor cells, and MAPK/PI3K and classic astroblastomas from oRG- and tRG-derived progenitors, respectively. Lastly, we found that like EET-MN1, immature ependymal cells express IGF2 and may represent an important source of this growth factor in the fetal lateral ventricular zone neural stem cell niche.