Project description:Myeloid-derived suppressor cells (MDSCs) have emerged as major regulators of immune responses in cancer and other pathological conditions. Multiple factors including cytokines, transcription factors and multiple signaling pathways are involved in MDSC differentiation. Cytokines such as granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin(IL-6) etc could in vitro mediate development of MDSCs.IL-6 with GM-CSF mediated MDSC not only had stronger suppressive function but also the dynamics of their suppressive function was different from GM-CSF alone mediated MDSCs.To found a new regulatory factor (s) in tumor and inflammatory environments, we compared GM-CSF and IL-6 mediated MDSCs with GM-CSF alone mediated MDSCs using lncRNA microarray, miRNA microarrays and protein-coding mRNA microarrays.
Project description:GM-CSF is involved in immune complex (IC)-mediated arthritis. However, little is known about what is the cellular source of GM-CSF and how it is regulated during IC-mediated inflammation. Using novel GM-CSF reporter mice, we show that NK cells produce GM-CSF during an IC-mediated model of inflammatory arthritis. NK cells promoted STIA in a GM-CSF-dependent manner, as deletion of NK cells and selective removal of GM-CSF production by NK cells abrogated disease. Furthermore, we show that myeloid cell activation by GM-CSF is restrained by induction of JAK/STAT checkpoint inhibitor cytokine-inducible SH2-containing protein, CIS. Myeloid cells from CIS-deficient mice had exaggerated responses to GM-CSF, and these mice develop exacerbated STIA. Our data suggest that tissue NK cells may amplify joint inflammation in arthritis via GM-CSF production and thus represent a novel target in IC-mediated pathology. Endogenous CIS provides a key brake on signaling through the GM-CSF receptor and strategies that boost its function may provide an alternative anti-inflammatory approach.
Project description:Reactive oxygen species, including RNS, contribute to the control of multiple immune cell functions within the tumor microenvironment (TME). Tumor-infiltrating myeloid cells (TIMs) represent the archetype of tolerogenic cells that actively contribute to dismantle effective immunity against cancer are among the cells most influenced by these molecules. TIMs inhibit T cell functions and promote tumor progression by several mechanisms including the amplification of the oxidative/nitrosative stress within the TME. In tumors, TIM expansion and differentiation is regulated by the granulocyte-macrophage colony-stimulating factor (GM-CSF), which is produced by cancer and immune cells. Nevertheless, the role of GM-CSF in tumors has not yet been fully elucidated. In this study, we show that GM-CSF activity is significantly affected by RNS-triggered post-translational modifications. The nitration of a single tryptophan residue in the sequence of GM-CSF nourishes the expansion of highly immunosuppressive myeloid subsets in tumor-bearing hosts. Importantly, tumors from colorectal cancer patients express higher levels of nitrated tryptophan compared to non-neoplastic tissues. Collectively, our data identify a novel and selective target that can be exploited to remodel the TME and foster protective immunity against cancer.