Project description:This SuperSeries is composed of the following subset Series:; GSE6960: Synthesis and Anticancer Properties of Water-Soluble Zinc Ionophores 1; GSE6962: Synthesis and Anticancer Properties of Water-Soluble Zinc Ionophores 2 Experiment Overall Design: Refer to individual Series
Project description:We have demonstrated that water-soluble zinc ionophores can be administered to mice at relatively high doses and inhibit the growth of A549 lung cancer cells grown in xenograft models. Gene expression profiles of tumor specimens harvested from mice four hours after treatment confirmed that the activation of stress responsive genes occurs in vivo. These findings lead us to propose that the pharmacologic delivery of zinc to tumors using water solubilized ionophores is a potential approach to cancer therapy. Keywords: Dose response
Project description:Zinc (Zn) is a major elemental component of respirable ambient particulate matter (PM) detected often at alarming levels in urban air. Exposure to PM has been widely associated with increased cardiovascular morbidity and mortality, however, it is not known what components or sources of PM are causative. We recently demonstrated that long-term episodic inhalation of combustion PM, having similar amount of Zn found in urban PM, caused myocardial lesions in rats. We further demonstrated that a single pulmonary exposure to Zn at high concentration is associated with disturbances in cardiac mitochondrial function, ion channel regulation, calcium homeostasis, and cell signaling. Therefore, in this study we investigated the role of PM-associated Zn in cardiac injury using multiple exposure scenarios. Male Wistar-Kyoto (WKY) rats of 12-14 wks age were intratracheally exposed (once per wk x 8 or16 wks) to either (1) saline (control); (2) PM having no soluble Zn; (3) combustion PM suspension containing 14.5 ug/mg water-soluble Zn at high and (4) low dose levels, (5) the aqueous fraction of this suspension devoid of solid insoluble particulate fraction (14.5 ug/mg soluble Zn), or (6) Zn sulfate. Zn concentrations were identical in groups 3, 5 and 6. Pulmonary toxicity was apparent in all exposure groups when compared to saline as determined by recovery of cells in bronchoalveolar lavage fluid. Long-term exposure to PM with or without soluble Zn, or Zn sulfate caused distinct myocardial lesions characterized by subepicardial and randomly distributed myocardial inflammation, degeneration, and fibrosis. The lesion severity was higher in those groups receiving Zn PM. Because cardiac mitochondria are likely the primary target of inhaled metal or other absorbed PM components, we analyzed mitochondrial DNA damage using QPCR and found that all exposure groups except those exposed to PM without Zn caused variable degree of damage. Aconitase activity, sensitive to inhibition by oxidative stress was inhibited slightly but significantly in rats receiving zinc sulfate. Although modest, microarray (Affymetrix) analysis revealed expression changes in the heart reflective of effects on cell signaling, inflammation/oxidative stress, mitochondrial fatty acid metabolisms and cell cycle regulation in rats exposed to zinc sulfate. However, these changes were minimal following exposure to PM devoid of soluble metals. We demonstrate that episodic subchronic pulmonary exposure to zinc sulfate causes cardiac injury and mitochondrial DNA damage. Thus, water-soluble PM-associated zinc may be one of the PM components responsible for cardiovascular morbidity. Experiment Overall Design: Group 1 received Saline to serve as a control. Group 2 received Mount St. Helenâs ash, which does not contain any water-soluble zinc or other metals such that we can delineate any cardiac effect secondary to pulmonary deposition of these particles as these fine mode particles themselves are not likely to translocate to the heart. Group 3 received whole saline suspension of the same fugitive oil combustion particle sample used in the previous study, which contained insoluble components plus water-soluble zinc (Kodavanti et al., 2003; 14.5 ug/mg zinc) and also a small amount of water-soluble nickel (3.0 µg/mg). Elemental composition of this PM is comparable to Ottawa urban PM (Kodavanti et al., 2003). Group 4 also received same particle sample but at half the dose than group 3. Group 5 received saline-soluble or leachable fraction of PM-HD devoid of any solid material but contained soluble components including zinc and nickel. And, group 6 received zinc sulfate at concentration that was present in groups 3 or 5. This design allowed us to test if cardiac injury in rats was due to leached of zinc or solid particles. There were 4 replicates per treatment group.
Project description:High-grade serous ovarian cancer (HGSOC) is one of the deadliest cancers for women, with a low survival rate, no early markers, a high rate of recurrence, and few therapeutic options. Forskolin, an activator of cyclic AMP signaling, has several anticancer activities, including against HGSOC, but has limited use in vivo. Its water-soluble derivative, colforsin daropate, has the same mechanism of action as forskolin and is used to treat acute heart failure. Here, we investigated the potential of colforsin daropate as a treatment for HGSOC. We found that colforsin daropate induced cell cycle arrest and apoptosis in cultured HGSOC cells and spheroids, but not in normal fallopian tube secretory cells and ovarian surface epithelial cells. Colforsin daropate also prevented HGSOC cells from invading ovarian surface cell layers in culture. In vivo, colforsin daropate reduced tumor growth, synergized with cisplatin (a standard chemotherapy in ovarian cancer care), and improved host survival in a subcutaneous xenograft model. These anti-tumor effects of colforsin daropate were mediated in part by its reduction in the abundance and transcriptional activity of the oncoprotein c-MYC, which is often increased in HGSOC. Our findings demonstrate that colforsin daropate may be a promising therapeutic that could be combined with conventional therapies to treat HGSOC.
Project description:Hexafluoro-2-propanol (HFIP), a water-soluble primary metabolite of the volatile anesthetic sevoflurane, has recently been shown to have favorable properties, improving overall survival in a chronic model of murine peritonitis. The mechanisms of protection provided by HFIP are currently unknown. We therefore performed a gene expression analysis in an in vitro model of endotoxin-induced endothelial cell injury to gain insight into involved molecular mechanisms. Pathway analysis was subsequently performed using the GeneGo Metacore Framework.
Project description:Rescuing the function of mutant p53 protein is an attractive cancer therapeutic strategy. Using the NCI anticancer drug screen data, we identified two compounds from the thiosemicarbazone family that manifest increased growth inhibitory activity in mutant p53 cells, particularly for the p53R175 mutant. Mechanistic studies reveal that NSC319726 restores WT structure and function to the p53R175 mutant. This compound kills p53R172H knock-in mice with extensive apoptosis and inhibits xenograft tumor growth in a 175-allele specific mutant p53 dependent manner. This activity depends upon the zinc ion chelating properties of the compound as well as redox changes. These data identify NSC319726 as a p53R175 mutant reactivator and as a lead compound for p53 targeted drug development. We utilized gene expression microarrays to examine the transcriptional activity of p53 targets in TOV112D cells after treatment with NSC319726. Triplicate cultures of TOV112D cells untreated, treated with NSC319726. Total RNA was extracted and hybridized to Affymetrix human U133 plus 2.0 microarrays.
Project description:Zinc (Zn) is a major elemental component of respirable ambient particulate matter (PM) detected often at alarming levels in urban air. Exposure to PM has been widely associated with increased cardiovascular morbidity and mortality, however, it is not known what components or sources of PM are causative. We recently demonstrated that long-term episodic inhalation of combustion PM, having similar amount of Zn found in urban PM, caused myocardial lesions in rats. We further demonstrated that a single pulmonary exposure to Zn at high concentration is associated with disturbances in cardiac mitochondrial function, ion channel regulation, calcium homeostasis, and cell signaling. Therefore, in this study we investigated the role of PM-associated Zn in cardiac injury using multiple exposure scenarios. Male Wistar-Kyoto (WKY) rats of 12-14 wks age were intratracheally exposed (once per wk x 8 or16 wks) to either (1) saline (control); (2) PM having no soluble Zn; (3) combustion PM suspension containing 14.5 ug/mg water-soluble Zn at high and (4) low dose levels, (5) the aqueous fraction of this suspension devoid of solid insoluble particulate fraction (14.5 ug/mg soluble Zn), or (6) Zn sulfate. Zn concentrations were identical in groups 3, 5 and 6. Pulmonary toxicity was apparent in all exposure groups when compared to saline as determined by recovery of cells in bronchoalveolar lavage fluid. Long-term exposure to PM with or without soluble Zn, or Zn sulfate caused distinct myocardial lesions characterized by subepicardial and randomly distributed myocardial inflammation, degeneration, and fibrosis. The lesion severity was higher in those groups receiving Zn PM. Because cardiac mitochondria are likely the primary target of inhaled metal or other absorbed PM components, we analyzed mitochondrial DNA damage using QPCR and found that all exposure groups except those exposed to PM without Zn caused variable degree of damage. Aconitase activity, sensitive to inhibition by oxidative stress was inhibited slightly but significantly in rats receiving zinc sulfate. Although modest, microarray (Affymetrix) analysis revealed expression changes in the heart reflective of effects on cell signaling, inflammation/oxidative stress, mitochondrial fatty acid metabolisms and cell cycle regulation in rats exposed to zinc sulfate. However, these changes were minimal following exposure to PM devoid of soluble metals. We demonstrate that episodic subchronic pulmonary exposure to zinc sulfate causes cardiac injury and mitochondrial DNA damage. Thus, water-soluble PM-associated zinc may be one of the PM components responsible for cardiovascular morbidity. Keywords: Pulmonary exposure, Cardiac gene expression
Project description:Zinc deficiency is detrimental to organisms highlighting its role as an essential micronutrient contributing to numerous biological processes. To investigate the underlying molecular events invoked by zinc depletion we performed a temporal analysis of transcriptome changes observed within zebrafish gill. This tissue represents a model system for studying ion absorption across polarised cells as it provides a major pathway for fish to acquire zinc directly from water whilst sharing a conserved zinc transporting system with mammals. Zebrafish were treated with either zinc-depleted (water = 2.61 μg L-1; diet = 26 mg kg-1) or zinc-adequate (water = 16.3 μg L-1; diet = 233 mg kg-1) conditions for two weeks. Gill samples were collected at five time points and transcriptome changes analysed in quintuplicate using a 16K oligonucleotide array.