Project description:Although satellite glial cells (SGCs) are among the most abundant non-neuronal cells in dorsal root ganglia (DRG), little is known about their heterogenity and functions. We used single cell RNA sequencing (scRNA-seq) to analyze the heterogenity and unique functions of SGCs.
Project description:G protein-coupled receptor 37-like 1 (GPR37L1) is an orphan GPCR, and its function remains largely unknown. Here we report that Gpr37l1 and GPR37L1 are among the most highly expressed GPCR transcripts in mouse and human dorsal root ganglia (DRGs) and are selectively expressed in satellite glial cells (SGCs). Peripheral neuropathy following PTX-induced pain resulted in a downregulation of GPR37L1 plasma membrane expression in DRGs. Transgenic mice with Gpr37l1 deficiency exhibited impaired resolution of neuropathic pain symptoms following PTX-induced pain, whereas overexpression of Gpr37l1 in mouse DRGs reversed pain. GPR37L1 regulates the surface expression and function of these potassium channels. Thus, GPR37L1 in SGCs offers a new target for neuropathy protection and pain control.
Project description:Satellite glia are the major glial type found in ganglia of the peripheral nervous system that wrap around cell bodies of sympathetic and sensory neurons that are very diverse. Other than their close physical association with peripheral neurons, little is known about this glial population. Here, we performed single cell RNA sequencing analysis and identified five different populations of satellite glia from sympathetic and sensory ganglia. We identify three shared populations of satellite glia enriched in immune-response genes, immediate-early genes and ion channels/ECM-interactors, respectively. Sensory- and sympathetic-specific satellite glia are differentially enriched for modulators of lipid metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Further, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals remarkable heterogeneity of satellite glia in the peripheral nervous system.
Project description:Six different mouse pain models were studied: (1) tumour-injection model for bone cancer pain; (2) partial sciatic nerve ligation (PSL) for neuropathic pain; (3) mechanical joint loading for osteoarthritis pain; (4) oxaliplatin-induced painful neuropathy for chemotherapy-induced pain; (5) hyperalgesic priming model for chronic muscle pain; and (6) complete Freund’s adjuvant (CFA)-injection for inflammatory pain. Transcriptomic microarray analyses were performed using RNA isolated from dorsal root ganglia.
Project description:The recent advance in single cell RNAseq technologies has enabled a new approach to investigate satellite glial cells (SGCs). Here we publish a dataset from mice subjected to sciatic nerve injury as well as a dataset from dorsal root ganglia cells after 3 days in culture. We use a meta-analysis approach to compare the injury response with that in other published datasets and conclude that SGCs share a common signature following sciatic nerve crush and sciatic ligation, involving transcriptional regulation of cholesterol biosynthesis. We also observed a considerable transcriptional change when culturing SGCs, suggesting that some differentiate into a specialised in vitro state, while others start resembling Schwann cell-like precursors.
Project description:Expression of DREAM in dorsal root ganglia and spinal cord is related to endogenous control mechanisms of acute and chronic pain. In primary sensory trigeminal neurons high levels of endogenous DREAM protein are preferentially localized in the nucleus, suggesting a major transcriptional role. Here, we show that DREAM participates in the control of trigeminal pain perception through the regulation of prodynorphin and BDNF. Furthermore, genome-wide analysis of trigeminal neurons in daDREAM transgenic mice revealed that cathepsin L (CTSL) and the monoglyceride lipase (MGLL) are new DREAM downstream targets and have a role in the regulation of trigeminal nociception.
Project description:In this study, we screened the differentially expressed genes (DEGs) in the dorsal root ganglia (DRG) from rats with sham or partial sciatic nerve ligation (pSNL) surgery 7 days using RNAseq technique to explore the molecular mechanisms of neuropathic pain
Project description:The nodose ganglia contain sensory neurons that play key roles in homeostatic behaviors and are supported by nodose glial cells. We used single cell RNA sequencing (scRNA-seq) to interrogate the molecular diversity of nodose glial cells shortly after birth.