Project description:The dodo, Raphus cucullatus, a flightless pigeon endemic to Mauritius, became extinct during the 17th century due to anthropogenic activities. Although it was contemporaneous with humans for almost a century, little was recorded about its ecology. Here we present new aspects of the life history of the dodo based on our analysis of its bone histology. We propose that the dodo bred around August and that the rapid growth of the chicks enabled them to reach a robust size before the austral summer or cyclone season. Histological evidence of molting suggests that after summer had passed, molt began in the adults that had just bred; the timing of molt derived from bone histology is also corroborated by historical descriptions of the dodo by mariners. This research represents the only bone histology analysis of the dodo and provides an unprecedented insight into the life history of this iconic bird.
Project description:The external appearance of the dodo (Raphus cucullatus, Linnaeus, 1758) has been a source of considerable intrigue, as contemporaneous accounts or depictions are rare. The body mass of the dodo has been particularly contentious, with the flightless pigeon alternatively reconstructed as slim or fat depending upon the skeletal metric used as the basis for mass prediction. Resolving this dichotomy and obtaining a reliable estimate for mass is essential before future analyses regarding dodo life history, physiology or biomechanics can be conducted. Previous mass estimates of the dodo have relied upon predictive equations based upon hind limb dimensions of extant pigeons. Yet the hind limb proportions of dodo have been found to differ considerably from those of their modern relatives, particularly with regards to midshaft diameter. Therefore, application of predictive equations to unusually robust fossil skeletal elements may bias mass estimates. We present a whole-body computed tomography (CT) -based mass estimation technique for application to the dodo. We generate 3D volumetric renders of the articulated skeletons of 20 species of extant pigeons, and wrap minimum-fit 'convex hulls' around their bony extremities. Convex hull volume is subsequently regressed against mass to generate predictive models based upon whole skeletons. Our best-performing predictive model is characterized by high correlation coefficients and low mean squared error (a = - 2.31, b = 0.90, r (2) = 0.97, MSE = 0.0046). When applied to articulated composite skeletons of the dodo (National Museums Scotland, NMS.Z.1993.13; Natural History Museum, NHMUK A.9040 and S/1988.50.1), we estimate eviscerated body masses of 8-10.8 kg. When accounting for missing soft tissues, this may equate to live masses of 10.6-14.3 kg. Mass predictions presented here overlap at the lower end of those previously published, and support recent suggestions of a relatively slim dodo. CT-based reconstructions provide a means of objectively estimating mass and body segment properties of extinct species using whole articulated skeletons.