Project description:Maternal exposure to particulate air pollution increases the incidence and severity of asthma in offspring, yet the mechanisms for this are unclear. Known susceptibility loci are a minor component of this effect. We interrogate a mouse allergic airway disease model to assess epigenetic associations between maternal air pollution exposure and asthma-like responses in offspring. Maternal air pollution exposure increased allergic airway disease severity in adult offspring associated with a suppressed transcriptomic response to allergen. Control progeny showed differential expression of 2842 genes across several important pathways, including the SMAD and TGFβR pathways, whilst air pollutant progeny showed an 80% reduction in differentially expressed genes and abrogation of many pathway associations. Whole genome CpG methylome analysis following allergen challenge detected differential methylation regions across the genome. Approximately 20% of differentially expressed genes were associated with differential methylation. Differentially methylated regions were markedly reduced in offspring of air pollution exposed mothers, and this was most evident in intronic regions and some transposable element classes. This study shows that allergic airways disease in adult offspring of PM2.5 exposed mothers had a markedly repressed transcriptomic response, a proportion of which was associated with identifiable changes in the lung’s methylome. The results point to an epigenetic contribution to the severity of asthma in offspring of mothers exposed to particulate air pollution.
Project description:Maternal exposure to particulate air pollution increases the incidence and severity of asthma in offspring, yet the mechanisms for this are unclear. Known susceptibility loci are a minor component of this effect. We interrogate a mouse allergic airway disease model to assess epigenetic associations between maternal air pollution exposure and asthma-like responses in offspring. Maternal air pollution exposure increased allergic airway disease severity in adult offspring associated with a suppressed transcriptomic response to allergen. Control progeny showed differential expression of 2842 genes across several important pathways, including the SMAD and TGFβR pathways, whilst air pollutant progeny showed an 80% reduction in differentially expressed genes and abrogation of many pathway associations. Whole genome CpG methylome analysis following allergen challenge detected differential methylation regions across the genome. Approximately 20% of differentially expressed genes were associated with differential methylation. Differentially methylated regions were markedly reduced in offspring of air pollution exposed mothers, and this was most evident in intronic regions and some transposable element classes. This study shows that allergic airways disease in adult offspring of PM2.5 exposed mothers had a markedly repressed transcriptomic response, a proportion of which was associated with identifiable changes in the lung’s methylome. The results point to an epigenetic contribution to the severity of asthma in offspring of mothers exposed to particulate air pollution.
Project description:Comparison of genome-wide gene expression between humans living in areas of high levels of air pollution and less polluted areas. Keywords: Comparison of genome-wide gene expression between different conditions
Project description:Comparison of genome-wide gene expression between humans living in areas of high levels of air pollution and less polluted areas. Experiment Overall Design: The study investigated differential gene expression in peripheral blood from 23 children and 12 adults from a region of residence with high levels of air pollution as compared to 24 children and 12 adults from a less-polluted area.Two conditions: living in the polluted or in the less-polluted area. One individual per array, hybridized against a common reference sample
Project description:Transcriptional profiling of Homo sapiens inflammatory skin diseases (whole skin biospies): Psoriasis (Pso), vs Atopic Dermatitis (AD) vs Lichen planus (Li), vs Contact Eczema (KE), vs Healthy control (KO) In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation. In recent years, different genes and proteins have been highlighted as potential biomarkers for psoriasis, one of the most common inflammatory skin diseases worldwide. However, most of these markers are not psoriasis-specific but also found in other inflammatory disorders. We performed an unsupervised cluster analysis of gene expression profiles in 150 psoriasis patients and other inflammatory skin diseases (atopic dermatitis, lichen planus, contact eczema, and healthy controls). We identified a cluster of IL-17/TNFα-associated genes specifically expressed in psoriasis, among which IL-36γ was the most outstanding marker. In subsequent immunohistological analyses IL-36γ was confirmed to be expressed in psoriasis lesions only. IL-36γ peripheral blood serum levels were found to be closely associated with disease activity, and they decreased after anti-TNFα-treatment. Furthermore, IL-36γ immunohistochemistry was found to be a helpful marker in the histological differential diagnosis between psoriasis and eczema in diagnostically challenging cases. These features highlight IL-36γ as a valuable biomarker in psoriasis patients, both for diagnostic purposes and measurement of disease activity during the clinical course. Furthermore, IL-36γ might also provide a future drug target, due to its potential amplifier role in TNFα- and IL-17 pathways in psoriatic skin inflammation.
Project description:Air pollutants including particulate matter (PM) and chemicals adsorbed onto PM pose a serious threat to human health. In this study, we analyzed the ability of PM to induce diverse gene expression profile modulation after chronic exposure in subjects living in two regions of the Czech Republic differing in levels and sources of the air pollution. We also considered impact of different seasonal conditions on concentrations and compositions of PM. Blood samples of 312 subjects from polluted Ostrava city and 154 controls from Prague city were collected in winter 2009, summer 2009 and winter 2010. The highest concentrations of air pollutants were detected in winter 2010 when the subjects were exposed to: PM of aerodynamic diameter < 2.5 M-BM-5m (70 vs. 44.9 M-BM-5g/m3); benzo[a]pyrene (9.02 vs. 2.56 ng/m3) and benzene (10.2 vs. 5.5 M-BM-5g/m3) in Ostrava and Prague, respectively. Global gene expression analysis of total RNA extracted from leukocytes was performed using whole genome microarrays (Illumina). The expression of selected genes was verified by quantitative real-time PCR (qRT-PCR). Despite lower concentrations of air pollutants we found a higher number of differentially expressed genes and affected KEGG pathways in subjects from Prague. In both locations we observed differences between seasons. The qRT-PCR analysis showed a significant decrease in expression of APEX, ATM, FAS, GSTM1, IL1B and RAD21 in subjects from Ostrava, in a comparison of winter 2010 and summer 2009. In Prague, an increase in gene expression was observed for GADD45A and PTGS2. In conclusion, high concentrations of pollutants in Ostrava do not increase the number of differentially expressed genes. This may be explained by adaption of humans to chronic exposure to air pollution. Total RNA was extracted from leukocytes of total of 154 control subjects and 312 subjects exposed to heavy air pollution. The samples were collected in three seasons (winter 2009, summer 2009, winter 2010) with different levels of air pollution. Most of the subjects were sampled repeatedly; however, some of them joined the study in summer 2009 or winter 2010.
Project description:The dataset contains methylation values of all SNP-filtered CpG sites for all samples from the air pollution study (total n=60). Nasal lavage samples were collected from n=29 moderately exposed (residing in Stuttgart) and n=31 lowly exposed (residing in Simmerath) individuals. For methods and study details, please see PMID 37343754.
Project description:Single-nucleus RNA sequencing (snRNA-seq) was used to profile the transcriptome of 16,015 nuclei in human adult testis. This dataset includes five samples from two different individuals. This dataset is part of a larger evolutionary study of adult testis at the single-nucleus level (97,521 single-nuclei in total) across mammals including 10 representatives of the three main mammalian lineages: human, chimpanzee, bonobo, gorilla, gibbon, rhesus macaque, marmoset, mouse (placental mammals); grey short-tailed opossum (marsupials); and platypus (egg-laying monotremes). Corresponding data were generated for a bird (red junglefowl, the progenitor of domestic chicken), to be used as an evolutionary outgroup.
Project description:To elucidate the epithelial cell diversity within the nasal inferior turbinates, a comprehensive investigation was conducted comparing control subjects to individuals with house dust mite-induced allergic rhinitis. This study aimed to delineate the differential expression profiles and phenotypic variations of epithelial cells in response to allergic rhinitis. This research elucidated distinct subpopulations and rare cell types of epithelial cells within the nasal turbinates, discerning alterations induced by allergic rhinitis. Furthermore, by interrogating transcriptomic signatures, the investigation provided novel insights into the cellular dynamics and immune responses underlying allergic rhinitis pathogenesis