Project description:The chromosomes of several widely used laboratory derivatives of Streptomyces coelicolor A3(2) were found to have 1.06 Mb inverted repeat sequences at their termini (i.e. long-terminal inverted repeats; L-TIRs), which are 50 times the length of the 22 kb TIRs of the sequenced S. coelicolor strain M145. The L-TIRs include 1005 annotated genes and increase the overall chromosome size to 9.7 Mb. The 1.06 Mb L-TIRs are the longest reported thus far for an actinomycete, and are proposed to represent the chromosomal state of the original soil isolate of S. coelicolor A3(2). S. coelicolor A3(2), M600 and J1501 possess L-TIRs, whereas approximately half the examined early mutants of A3(2) generated by ultraviolet (UV) or X-ray mutagenesis have truncated their TIRs to the 22 kb length. UV radiation was found to stimulate L-TIR truncation. Two copies of a transposase gene (SCO0020) flank 1.04 Mb of DNA in the right L-TIR, and recombination between them appears to generate strains containing short TIRs. This TIR reduction mechanism may represent a general strategy by which transposable elements can modulate the structure of chromosome ends. The presence of L-TIRs in certain S. coelicolor strains represents a major chromosomal alteration in strains previously thought to be genetically similar.
Project description:We determine genes that responsible for iron induced resistance to kanamycin in Streptomyces coelicolor. Iron acts as a inducing agent for resistance to bactericidal antibiotics with concentration dependent manner. Identification of iron-dependent differentially expressed genes in wild-type by RNA-seq identified more than 100 genes. This series encompasses the RNA-seq data of our study.
Project description:The chromosomes of several widely used laboratory derivatives of Streptomyces coelicolor A3(2) were found to have 1.06 Mb inverted repeat sequences at their termini (i.e. long-terminal inverted repeats; L-TIRs), which are 50 times the length of the 22 kb TIRs of the sequenced S. coelicolor strain M145. The L-TIRs include 1005 annotated genes and increase the overall chromosome size to 9.7 Mb. The 1.06 Mb L-TIRs are the longest reported thus far for an actinomycete, and are proposed to represent the chromosomal state of the original soil isolate of S. coelicolor A3(2). S. coelicolor A3(2), M600 and J1501 possess L-TIRs, whereas approximately half the examined early mutants of A3(2) generated by ultraviolet (UV) or X-ray mutagenesis have truncated their TIRs to the 22 kb length. UV radiation was found to stimulate L-TIR truncation. Two copies of a transposase gene (SCO0020) flank 1.04 Mb of DNA in the right L-TIR, and recombination between them appears to generate strains containing short TIRs. This TIR reduction mechanism may represent a general strategy by which transposable elements can modulate the structure of chromosome ends. The presence of L-TIRs in certain S. coelicolor strains represents a major chromosomal alteration in strains previously thought to be genetically similar. A dose response design type examines the relationship between the size of the administered dose and the extent of the response of the organism(s). Keywords: dose_response_design
Project description:The goal was to study the dfactionation of different lignocelullose (glucose, wheat bran, wheat straw) by Streptomyces coelicolor A3(2) and the corresponding production of secondary metabolites. This was performed by multi-omic experiment such as transcriptomic/metabolomic and leads to the production of new metabolites. For that, the strain Streptomyces coelicolor A3(2) was subjected to two carbon sources in triplicate (wheat bran and glucose as control). Enzymatic activities were studied at different times and the expression of CAZYmes was studied by transcriptomic in order to detect which enzymes are needed for each carbon source
Project description:SYSTERACT: Systematic Rebuilding of Actinomycetes for Natural Product Formation For several decades antibiotics have saved millions of lives, but their overuse makes them less effective due to increase in bacterial resistance. Because of this major clinical and public health problem, there is an urgent need for new effective antimicrobials. The ERASysAPP project SYSTERACT aims to further develop, the model actinobacterium Streptomyces coelicolor into improved microbial cell factories to heterologously produce diverse bioactive compounds in amounts needed for structural and functional evaluation. Unprecedented systems biology understanding of S. coelicolor is being combined with morphology engineering and improved (de-)regulation and precursor supply to accelerate bioactive compound discovery efforts. By that means, we aim to generate a stepwise improved 'Superhost' for the production of antibiotics in which metabolic bottlenecks and regulatory restriction are greatly mitigated. The optimized strains will be tested concerning their applicability for an improved production of commercially relevant antibiotics and the expression of novel bioactive gene clusters identified in new actinomycete strains and environmental metagenomes. So far two strains, M145 and M1152, have been cultivated for time-resolved 'omics sampling, and a larger number of additional strains are on the list for similar experiments. High quality RNAseq-based transcriptome data have been generated and processed. M145 is the wildtype strain in S. coelicolor (as used in STREAM, see also GSE18489), 3 biol. replicas and M1152 lacks four major biosynthetic gene clusters, undecylprodigine (RED), calcium-dependent antibiotic (CDA), coelimycin (CPK) and actinorhodin (ACT). Contributors: A. Wentzel, W. Wohlleben, G. van Wezel, D van Dissel, O. Wolkenhauer, E. Kerkhoven, N. Spidsoe, K. Nieselt and the SYSTERACT consortium
Project description:SYSTERACT: Systematic Rebuilding of Actinomycetes for Natural Product Formation For several decades antibiotics have saved millions of lives, but their overuse makes them less effective due to increase in bacterial resistance. Because of this major clinical and public health problem, there is an urgent need for new effective antimicrobials. The ERASysAPP project SYSTERACT aims to further develop, the model actinobacterium Streptomyces coelicolor into improved microbial cell factories to heterologously produce diverse bioactive compounds in amounts needed for structural and functional evaluation. Unprecedented systems biology understanding of S. coelicolor is being combined with morphology engineering and improved (de-)regulation and precursor supply to accelerate bioactive compound discovery efforts. By that means, we aim to generate a stepwise improved 'Superhost' for the production of antibiotics in which metabolic bottlenecks and regulatory restriction are greatly mitigated. The optimized strains will be tested concerning their applicability for an improved production of commercially relevant antibiotics and the expression of novel bioactive gene clusters identified in new actinomycete strains and environmental metagenomes. So far two strains, M145 and M1152, have been cultivated for time-resolved 'omics sampling, and a larger number of additional strains are on the list for similar experiments. High quality RNAseq-based transcriptome data have been generated and processed. M145 is the wildtype strain in S. coelicolor (as used in STREAM, see also GSE18489), 3 biol. replicas and M1152 lacks four major biosynthetic gene clusters, undecylprodigine (RED), calcium-dependent antibiotic (CDA), coelimycin (CPK) and actinorhodin (ACT). Contributors: A. Wentzel, W. Wohlleben, G. van Wezel, D van Dissel, O. Wolkenhauer, E. Kerkhoven, N. Spidsoe, K. Nieselt and the SYSTERACT consortium
Project description:We investigated a novel, simple approach to induce the production of cryptic secondary metabolites in actinomycetes by stimulating the organism with high-intensity monochromatic green light (180 radiation unit). Streptomyces coelicolor A3(2) produces blue antibiotic actinorhodin (ACT) and red antibiotic undecylprodigiosin (RED). Using these two pigment antibiotics as indicators, we found that sporulation acceleration and regulation of the antibiotic production pathways can be induced by using high-intensity monochromatic green LEDs. Therefore, we investigated the immediate response of S. coelicolor A3(2) gene expression to the strong green LED stimulation.