Project description:The objective of this study was to gain better understanding of the follicular conditions associated with low oocyte developmental competence. In summary, we demonstrated that differences in follicle maturity at collection could explain differences in oocyte competence associated with individual animals. We also revealed deficiencies in lipid metabolism and retinol signalling in granulosa cells from donors of mostly incompetent oocytes.
Project description:Gene expression profiles of granulosa cells from rat ovarian follicles by Affymetrix rat whole genome array showed that twelve genes were up-regulated, while one gene down-regulated more than 1.5 folds in the normal developmental competence group compared with those in the poor developmental competence group. Gene ontology classification showed that the up-regulated genes included lysyl oxidase and nerve growth factor receptor associated protein 1, which are important in the regulation of protein-lysine 6-oxidase activity, and in apoptosis induction, respectively. The down-regulated genes included glycoprotein-4-beta galactosyltransferase 2, which is involved in the regulation of extracellular matrix organization and biogenesis. Experiment Overall Design: Immature rats were injected with eCG and 24h thereafter with anti-eCG antibody to induce follicular atresia or with pre-immune serum to stimulate follicle development. A high percentage (30-50%, normal developmental competence, NDC) of oocytes from eCG/pre-immune serum group developed to term after embryo transfer compared to those from eCG/anti-eCG (0%, poor developmental competence, PDC). Gene expression profiles of granulosa cells from the above oocyte-collected follicles were assessed by Affymetrix rat whole genome array.
Project description:The objective of this study was to gain better understanding of the follicular conditions associated with low oocyte developmental competence in younger donors. In summary, we demonstrated that differences in follicle maturity at collection could explain differences in oocyte competence associated with individual animals.
Project description:The oocyteâs capacity to complete maturation, to succeed fertilization and to reach the blastocyst stage is what defines the oocyteâs competence. The oocyte acquires this competence working closely with somatic cells of the follicle. Cumulus and granulosa cells provided support for the oocyteâs development and conversely the oocyte influence follicular cell growth and differentiation. Existing studies support the idea that follicular-stimulated hormone and luteinizing hormone play an essential role in oocyte competence acquisition through protein kinase A (PKA) and protein kinase C (PKC) signalling in granulosa cells. Therefore, human-like granulosa cells (KGN) were treated with forskolin 10 μM and phorbol 12-myristate 13-acetate 0.1 μM for 24 hours in order to process a transcriptomic analysis of differentially express genes between treatment. Over 2000 genes were founded to be differentially express at cut-off fold change of 1.5 and a p-value of 0.05. Five major upstreams, EGF, TGFB1, VEGF, FGF2 and HGF were founded to play an important role in competence acquisition thought PKA and PKC signalling. Differentially expressed targeted genes of both signalling pathways were classified in seven major ovarian functions such as PTGS2, IL8 and IL6 in inflammation, STAR, CYP11A1, CYP19A1 in steroidogenesis, VEGFC, VEGFA, CXCR4 in angiogenesis, AREG, EGFR, SPRY2 in differentiation, BAX, BCL2L12, CASP1 in apoptosis, CCND1, CCNB1, CCNB2 in division and MMP1, MMP9, TIMP1 in ovulation. Taken together, the results of this study suggest that PKA and PKC signalling potentiate their effects in some functions such as inflammation and apoptosis while some others are more specific to one or the other protein kinase like differentiation, ovulation and angiogenesis that are thought to be more PKC-dependent in human granulosa cells. 8 samples were analysed, 4 controls compared to 4 Forskolin treatments (total of 4 replicates).
Project description:The oocyteâs capacity to complete maturation, to succeed fertilization and to reach the blastocyst stage is what defines the oocyteâs competence. The oocyte acquires this competence working closely with somatic cells of the follicle. Cumulus and granulosa cells provided support for the oocyteâs development and conversely the oocyte influence follicular cell growth and differentiation. Existing studies support the idea that follicular-stimulated hormone and luteinizing hormone play an essential role in oocyte competence acquisition through protein kinase A (PKA) and protein kinase C (PKC) signalling in granulosa cells. Therefore, human-like granulosa cells (KGN) were treated with forskolin 10 μM and phorbol 12-myristate 13-acetate 0.1 μM for 24 hours in order to process a transcriptomic analysis of differentially express genes between treatment. Over 2000 genes were founded to be differentially express at cut-off fold change of 1.5 and a p-value of 0.05. Five major upstreams, EGF, TGFB1, VEGF, FGF2 and HGF were founded to play an important role in competence acquisition thought PKA and PKC signalling. Differentially expressed targeted genes of both signalling pathways were classified in seven major ovarian functions such as PTGS2, IL8 and IL6 in inflammation, STAR, CYP11A1, CYP19A1 in steroidogenesis, VEGFC, VEGFA, CXCR4 in angiogenesis, AREG, EGFR, SPRY2 in differentiation, BAX, BCL2L12, CASP1 in apoptosis, CCND1, CCNB1, CCNB2 in division and MMP1, MMP9, TIMP1 in ovulation. Taken together, the results of this study suggest that PKA and PKC signalling potentiate their effects in some functions such as inflammation and apoptosis while some others are more specific to one or the other protein kinase like differentiation, ovulation and angiogenesis that are thought to be more PKC-dependent in human granulosa cells. 8 samples were analysed, 4 controls compared to 4 Phorbol 12-myristate 13-acetate treatments (total of 4 replicates).
Project description:Inflammation is a key component of pathological angiogenesis. Here we induce cornea neovascularisation using sutures placed into the cornea, and sutures are removed to induce a regression phase. We used whole transcriptome microarray to monitor gene expression profies of several genes
Project description:Oocyte developmental potential is progressively obtained as females approach puberty. Therefore, oocytes derived from prepubertal females are less developmentally competent, indicated by decreased embryonic development, compared to oocytes derived from adult females. To investigate mechanisms involved in establishing oocyte cytoplasmic maturation and developmental competence, Affymetrix GeneChip microarrays were used. Keywords: oocyte developmental competence, maternal age
Project description:Limited oocyte and ovarian reserve in vivo or chemo-therapy leads to reproductive aging or premature aging and associated diseases including infertility. Excitingly, oocytes have been successfully derived from embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) by ectopic expression of transcription factors, showing great potential in fertility preservation or restoration. The accessible granulosa cells are a type of somatic cells that interact and evolve with oocyte development during folliculogenesis. Further, with stem cells-like property, granulosa cells are amenable to reprogramming to generate iPSCs and have been the first used for clone animals. These prompted us to explore the potential of granulosa cells in derivation of germ cells. Meanwhile, the strict genome fidelity required for germ cells inspired us to test reprograming by complete small chemicals, which avoids genetic manipulation, cell transfection and destruction of embryos. Here we show that somatic granulosa cells of adult mouse ovaries can be converted to germ cells and functional oocytes that reproduce fertile pups. We are able to consistently induce granulosa cells to pluripotent state (gPSCs) like ESCs in both developmental competence and molecular signatures. Notably, crotonic sodium-facilitated crotonylation is critical not only for pure small chemicals-based reprogramming of granulosa cells to gPSCs, but also confers the gPSCs with high germline capacity. Consequently, the gPSCs and the derived primordial germ-cell like cells hold longer telomeres and maintain high genomic stability which is critical for germ cells. Taken together, we efficiently generate high quality gPSCs and functional oocytes from adult granulosa cells by significantly improving chemical reprograming approach.
Project description:The aim of this study was to assess the impact of oocyte competence on subsequent fertility. Based on knowledge already accessible in mammals and on bioinformatics tools including the chicken genome sequence, we focused on the expression of genes involved in the processes of fertilization and of early embryo development. A differential kinetic study is performed on INRA lines selected on the basis of their fertility potential in purpose of hopefully access gene markers of fertility performance. We use 4 different hen lines:; - one line of laying hens with 3 different samples: the just ovulated oocyte, the oocyte collected 24 hours before ovulation (F1 stage), and granulosa cells collected at the F1 stage. We could compare different tissue and developmental stages. - one line of hen with rapid growth speed; - two lines of laying hens; For the 3 last lines we used animals with different fertility levels. We collected the oocyte of the largest follicle before ovulation (F1). The aim of the study is to identify genes involved in fertility or early embryo mortality. Experiment Overall Design: 6 arrays - Gallus gallus