Project description:The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is an important pest of corn (Zea mays) in the US. Annual crop rotation between corn and soybean (Glycine max) disrupts the corn-dependent WCR lifecycle and was widely adopted to manage WCR. However, this strategy selected for a rotation-resistant (RR) variant with reduced ovipositional fidelity to cornfields. Previous studies indicated that RR-WCR adults exhibit greater tolerance of soybean tissue diet, different gut physiology, and host-microbe interactions compared to wild-types (WT). To identify genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses on RNA libraries from different WCR phenotypes (RR and WT) fed with corn or soybean diets. Differential gene expression analyses and network-based methods were used to identify gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses on these modules were then conducted to understand their potential functions and biological importance.
Project description:The western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte) is an important pest of corn (Zea mays) in the US. Annual crop rotation between corn and soybean (Glycine max) disrupts the corn-dependent WCR lifecycle and was widely adopted to manage WCR. However, this strategy selected for a rotation-resistant (RR) variant with reduced ovipositional fidelity to cornfields. Previous studies indicated that RR-WCR adults exhibit greater tolerance of soybean tissue diet, different gut physiology, and host-microbe interactions compared to wild-types (WT). To identify genetic mechanisms underlying these phenotypic changes, a de novo assembly of the WCR adult gut transcriptome was constructed and used for RNA-sequencing analyses on RNA libraries from different WCR phenotypes (RR and WT) fed with corn or soybean diets. Differential gene expression analyses and network-based methods were used to identify gene modules transcriptionally correlated with the RR phenotype. Gene ontology enrichment analyses on these modules were then conducted to understand their potential functions and biological importance. Differential gene expression analyses on RNA libraries from adult guts of different WCR phenotypes (rotation-resistant and wild-type) fed with corn or soybean diets
Project description:Epigenetic changes in the DNA methylome are increasingly shown to play an integral role in regulating gene expression necessary for plants’ adaption to environmental stressors. Plants subjected to the novel environment of spaceflight onboard the International Space Station (ISS), show stress-related transcriptomic changes most notably associated with pathogen stress response. Here, we investigate how known terrestrial stress associated epigenetic modulations might play a role in spaceflight adaptation. To examine the role of 5mCyt in spaceflight adaptation, the APEX04-EPEX experiment conducted onboard the ISS evaluated the spaceflight altered genome wide methylation profiles of two methylation regulating gene mutants (methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)) that are involved in pathogen defense response, along with a wild type Col-0 control. MethylSeq and RNAseq analyses were performed on both spaceflight grown samples and ground grown controls. In addition, the epigenetics effects that may contribute to the differential gene expression patterns observed between leaf and root tissues were also investigated in an organ-specific manner.
Project description:Epigenetic changes in the DNA methylome are increasingly shown to play an integral role in regulating gene expression necessary for plants’ adaption to environmental stressors. Plants subjected to the novel environment of spaceflight onboard the International Space Station (ISS), show stress-related transcriptomic changes most notably associated with pathogen stress response. Here, we investigate how known terrestrial stress associated epigenetic modulations might play a role in spaceflight adaptation. To examine the role of 5mCyt in spaceflight adaptation, the APEX04-EPEX experiment conducted onboard the ISS evaluated the spaceflight altered genome wide methylation profiles of two methylation regulating gene mutants (methyltransferase 1 (met1-7) and elongator complex subunit 2 (elp2-5)) that are involved in pathogen defense response, along with a wild type Col-0 control. MethylSeq and RNAseq analyses were performed on both spaceflight grown samples and ground grown controls. In addition, the epigenetics effects that may contribute to the differential gene expression patterns observed between leaf and root tissues were also investigated in an organ-specific manner.
Project description:Plants display remarkable developmental and phenotypic plasticity in order to adapt to their environment. It has long been postulated that epigenetics plays a key role in these processes, but with one or two exceptions, solid evidence for the role of epigenetic variation in these processes is lacking. A key impediment to understanding these processes is the lack of information on the extent of epigenetic variation and how it relates to genetic and phenotypic variation in natural population, both over the lifecycle of an individual, and over evolutionary time. Here we show that genetic variants under selection in the north of Sweden appear to drive variation in DNA methylation, which in turn is highly correlated with local climate. Selective sweeps and genetic variants associated with adaptation to the local environment have previously been identified within the Swedish Arabidopsis population. Our finding that they harbour variants responsible for climate associated epigenetic variation strongly supports the role of epigenetic processes in local adaptation. These findings provide a basis for further dissecting the role of epigenetics in local adaptation at the molecular level Bisulfite sequencing of 113 F2 crosses between T550 and Brosarp-11-135.