Project description:To explore functional lncRNAs during sheep muscle growth, we systematically investigated lncRNAs using strand-specific Ribo-Zero RNA Sequencing at three key developmental stages of Hu sheep (110-day fetus, 5-day-old lamb and 2-year-old adult)
Project description:Follicular development is a highly coordinated process in Hu sheep. Follicle-cyclic recruitment, spatial displacement, follicle atresia, and ovulation are implicated events resulting from the somatic cells' release of molecular signals. Hu sheep is a high-quality sheep breed with high fecundity in China and is ideal for investigating high reproductive traits. In the current study, the sheep with lambing number ≥3 in three consecutive lambing records were assigned to the HLS group, and lambing number = 1 as the LLS group selected from the same farm with three consecutive lambings. Three randomly picked ewes were slaughtered within 12 h of estrus, and unilateral ovarian tissue was collected and analyzed by single-cell RNA sequencing in each group. A total of five types of somatic cells were identified, and corresponding expression profiles were mapped in the ovaries of the Hu sheep. Additionally, the results of the difference in ovary somatic cell expression profiles between HLS and LLS present that the differences between multiples vs. singleton Hu sheep were mainly clustered in the GCs. In addition, 4 granulosa cell subtypes were identified. GeneSwitches results revealed the opening of JPH1 expression and the closure of LOC101112291, which leads to different evolutionary directions of the granular cells. The expression levels of FTH1 and FTL in GCs of Hu sheep in the HLS group were significantly higher, which inhibited necroptosis and ferroptosis of mural-GCs from decreasing follicular atresia. This study constructed the cellular atlas of the ovary and revealed related biological characteristics at the cellular molecular level. It provides a theoretical basis for the mechanisms underlying the differences in ovulation numbers, which contributes to breeding high-fertility sheep and molecular genetics-based selection.
2023-08-15 | GSE233801 | GEO
Project description:Identification of key genes in regulating important flavor precursors in sheep
Project description:Texel and Ujumqin sheep show obvious differences in muscle and fat growth, so they are ideal models not only to understand the molecular mechanism in prenatal skeletal muscle development, but to identify the potential target genes of myostatin. To elucidate the phenotypic variation between the two sheep breeds and the dynamic characteristics of gene expression in skeletal muscle during the development, we examined the development of skeletal muscle in transcriptome-wide level at 70, 85,100,120 , 135 days post coitus (dpc),birth, 1 month and 2 month. Using the specialized and standardized sheep transcriptome-wide oligo DNA microarray (Agilent), we analyzed the transcriptomic profiles of longissmuss dorsi muscle from fetuses of Texel and Ujumqin sheep. We characterized dynamic transcriptome-wide profiles that accompany the prenatal skeletal muscle and fat development in Texel and Ujumqin sheep respectively, and compared the difference in profiles of gene expression between the two sheep breeds at the same developmental stage.Some potential myostatin target genes and other genes controlling the growth of skeletal muscle and adipose were identified for further examinations. Our findings not only contribute to understand the molecular mechanism of prenatal skeletal muscle development in large precocial species, but also provide some clues for human myopathy and obesity at prenatal stages. Moreover, we also can identify putative candidate genes for meat quality traits in farm animals. Longissimus dorsi muscles were sampled from five prenatal development stages (70, 85, 100, 120 and 135 day of gestation) in Texel and eight development stages (at 70, 85, 100, 120, 135 days post coitus (dpc), birth, 1 month and 2 month) in Ujumqin sheep. There were at least three replicates at each development time in each breed. Two gene expression experiments were conducted with a total of 40 hybridizations.
Project description:Body weight (BW) is a critical economic trait for meat production in sheep. The current study aimed to perform a genome-wide association study (GWAS) to detect significant single-nucleotide polymorphisms (SNPs) that are associated with BW in Hu sheep.