Project description:The Gram-negative bacterium Actinobacillus pleuropneumoniae is the etiologic agent of porcine contagious pleuropneumoniae, a lethal respiratory infectious disease causing great economic losses in the swine industry worldwide. In order to better interpret the genetic background of serotypic diversity, nine genomes of A. pleuropneumoniae reference strains of serovars 1, 2, 4, 6, 9, 10, 11, 12, and 13 were sequenced by using rapid high-throughput approach. Based on 12 genomes of corresponding serovar reference strains including three publicly available complete genomes (serovars 3, 5b, and 7) of this bacterium, we performed a comprehensive analysis of comparative genomics and first reported a global genomic characterization for this pathogen. Clustering of 26,012 predicted protein-coding genes showed that the pan genome of A. pleuropneumoniae consists of 3,303 gene clusters, which contain 1,709 core genome genes, 822 distributed genes, and 772 strain-specific genes. The genome components involved in the biogenesis of capsular polysaccharide and lipopolysaccharide O antigen relative to serovar diversity were compared, and their genetic diversity was depicted. Our findings shed more light on genomic features associated with serovar diversity of A. pleuropneumoniae and provide broader insight into both pathogenesis research and clinical/epidemiological application against the severe disease caused by this swine pathogen.
Project description:Actinobacillus pleuropneumoniae has been considered nonmotile and nonflagellate. In this work, it is demonstrated that A. pleuropneumoniae produces flagella composed of a 65-kDa protein with an N-terminal amino acid sequence that shows 100% identity with those of Escherichia coli, Salmonella, and Shigella flagellins. The DNA sequence obtained through PCR of the fliC gene in A. pleuropneumoniae showed considerable identity (93%) in its 5' and 3' ends with the DNA sequences of corresponding genes in E. coli, Salmonella enterica, and Shigella spp. The motility of A. pleuropneumoniae was observed in tryptic soy or brain heart infusion soft agar media, and it is influenced by temperature. Flagella and motility may be involved in the survival and pathogenesis of A. pleuropneumoniae in pigs.
Project description:LuxS is an enzyme involved in the activated methyl cycle and the by-product autoinducer 2 (AI-2) was a quorum sensing signal in some species. In our previous study, the functional LuxS in AI-2 production was verified in the porcine respiratory pathogen Actinobacillus pleuropneumoniae. Enhanced biofilm formation and reduced virulence were observed in the luxS mutant. To comprehensively understand the luxS function, in this study, the transcriptional profiles were compared between the A. pleuropneumoniae luxS mutant and its parental strain in four different growth phases using microarray. Many genes associated with infection were differentially expressed. The biofilm formation genes pgaABC in the luxS mutant were up-regulated in early exponential phase, while 8 genes associated with adhesion were down-regulated in late exponential phase. A group of genes involved in iron acquisition and metabolism were regulated in four growth phases. Further investigations on these virulence traits demonstrated that the luxS mutant showed enhanced biofilm formation and reduced adhesion ability and these effects were not due to lack of AI-2. But AI-2 could increase biofilm formation and adhesion of A. pleuropneumoniae independent of LuxS. Growth under iron restricted condition could be controlled by LuxS through AI-2 production. These results revealed pleiotropic roles of LuxS and AI-2 on A. pleuropneumoniae virulence traits.
Project description:Actinobacillus pleuropneumoniae is the etiologic agent of contagious pleuropneumonia, an economically important disease of commercially reared swine throughout the world. To cause this disease, A. pleuropneumoniae must rapidly overcome porcine pulmonary innate immune defenses. Effects of koromycin, an antimicrobial agent that acts as an noncompetitive inhibitor of the interaction of NQR with its quinone substrate, on the transcriptome of A. pleuropneumoniae was investigated.