Project description:Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease that ranges from simple steatosis, to inflammatory form non-alcoholic steatohepatitis (NASH), cirrhosis, and up to hepatocellular carcinoma. While NASH usually takes decades to develop at a rate of one stage per seven years, in the case of post-trasplant NASH (pt-NASH) develops fibrosis much more rapidly, with almost 50% of liver transplant recipients presenting stage 3 fibrosis by 5 years post-transplant. Archived fresh-frozen transplanted liver biopsy samples from four liver biopsy samples with evidence of NASH (2 recurrent and 2 de novo), two with simple steatosis (both de novo), and five with normal histology as controls had their transcriptome sequenced in two batches for deeper coverage.
Project description:Owenia fusiformis has a unique mitraria larvae form which is different to other marine spiralians. we utilize RNA-seq and ATAC-seq to profile the gene expression and chromatin accessibility to understand their development and evolution.
Project description:Owenia fusiformis has a unique mitraria larvae form which is different to other marine spiralians. we utilize RNA-seq and ATAC-seq to profile the gene expression and chromatin accessibility dynamics to understand their development and evolution.
Project description:Cellular differentiation is orchestrated by lineage-specific transcription factors and associates with cell type-specific epigenetic signatures. Here, we utilized stage-specific, epigenetic "fingerprints" to deduce key transcriptional regulators of a cellular differentiation process. In the model of human macrophage differentiation, we globally mapped the distribution of epigenetic enhancer marks (histone H3 lysine 4 monomethylation, histone H3 lysine 27 acetylation, and the histone variant H2AZ) and show that cell type-specific epigenetic "fingerprints" correlate with specific, de novo derived motif signatures at all differentiation stages studied (hematopoietic progenitor cell, monocyte, macrophage). We validated the novel, de novo derived, macrophage-specific enhancer signature which included ETS, CEBP, bZIP, EGR, E-Box and NFkB motifs by ChIP-sequencing for a subset of motif corresponding transcription factors (PU.1, C/EBPbeta, and EGR2) which confirmed their predicted association with differentiation-associated epigenetic changes. This study highlights the power of genome-wide epigenetic profiling studies to reveal novel functional insights. It describes the dynamic enhancer landscape of human macrophage differentiation and provides a unique resource for macrophage biologists. ChIP-seq of 3 histone marks and 3 transcription factors in human blood monocytes and macrophages
Project description:Chronic inflammatory bowel disease (IBD) is associated with an increased risk of colorectal cancer (CRC) in historical cohorts. The pathways of oncogenesis of these CRCs, which are very different clinically from de novo CRCs, are currently unknown. The aim of our work is to identify specific molecular signatures of CRC occurring in the setting of IBD.