Project description:Protein complexes of aegerolysins pleurotolysin A2 (PlyA2) and pleurotolysin B (PlyB) from oyster mushrooms Pleurotus sp. display targeted toxicity against Colorado potato beetle (CPB; Leptinotarsa decemlineata) larvae. This selective toxicity is achieved through aegerolysins' interaction with insect-specific membrane sphingolipids. This study explores the potential adaptive response of CPB larvae to the aegerolysin complex.
Project description:We report the transcriptional response to Colorado potato beetle herbivory in leaves of the highly beetle resistant Solanum chacoense diploid line USDA8380-1 (80-) and a susceptible F2 individual (EE501F2_093) derived from a cross between 80-1 and a beetle susceptible line S. chacoense M6. Sampling tissue in a time course during adult Colorado potato beetle feeding provides novel insight to the transcriptomic defense response to this important pest.
Project description:In the present study molecular interactions between potato plants, Colorado potato beetle (CPB) larvae and Potato virus YNTN (PVYNTN) were investigated by analyzing gene expression in potato leaves. Grant ID: J4-4165 Slovenian Research Agency ARRS Growth and defense trade-offs in multitrophic interaction between potato and its two major pests Grant ID: P4-0165 Slovenian Research Agency ARRS Biotechnology and Plant Systems Biology
Project description:In the present study molecular interactions between potato plants, Colorado potato beetle (CPB) larvae and Potato virus YNTN (PVYNTN) were investigated by analyzing gene expression in potato leaves. mRNA samples of secondary PVYNTN-infected (CPB_PVY) and healthy potato plants (CPB_H) cultivar Igor and of RNAi coi1-silenced (CPB_coi1) and non-transformed (CPB_NT) potato plants cultivar Desiree collected 24 h post CPB infestation and respective control non-infested samples (CONT_PVY, CONT_H, CONT_coi1, CONT_NT).
Project description:Potato leaves From Solanum tuberosum var. Kennebec will be wounded and oral secretions from 4th instar CPB will be isolated and added to the plants as described by Kruzmane et al (2002, Physiol. Plantarum 115:577-584). The leaf from the 6th node of the potato plant will be wounded or wounded and treated with oral secretions from CPB. Unwounded leaves from node 1-5 of the wounded and wounded plus oral secretions plants will be harvested as systemic material. The leaves will be harvested after 4 hrs and RNA will be isolated. 4 hrs was chosen because this represents a time when early and late induced genes should both be present. In addition, the leaf from the 6th node will be subjected to feeding by CPB that have been raised on potato leaves and starved for 16 hrs immediately prior to infestation. Insects will be allowed to feed for 1 hr and the leaves will be harvested after 3 additional hrs. An additional set of plants will be used to infest the leaf on the 6th node for 4 hrs. Leaves from the 6th node will be collected from uninfested plants after 4 hrs as a control. Three sets of 6-12 plants will be used for each sample. Keywords: Direct comparison
Project description:Potato leaves From Solanum tuberosum var. Kennebec will be wounded and oral secretions from 4th instar CPB will be isolated and added to the plants as described by Kruzmane et al (2002, Physiol. Plantarum 115:577-584). The leaf from the 6th node of the potato plant will be wounded or wounded and treated with oral secretions from CPB. Unwounded leaves from node 1-5 of the wounded and wounded plus oral secretions plants will be harvested as systemic material. The leaves will be harvested after 4 hrs and RNA will be isolated. 4 hrs was chosen because this represents a time when early and late induced genes should both be present. In addition, the leaf from the 6th node will be subjected to feeding by CPB that have been raised on potato leaves and starved for 16 hrs immediately prior to infestation. Insects will be allowed to feed for 1 hr and the leaves will be harvested after 3 additional hrs. An additional set of plants will be used to infest the leaf on the 6th node for 4 hrs. Leaves from the 6th node will be collected from uninfested plants after 4 hrs as a control. Three sets of 6-12 plants will be used for each sample. Keywords: Direct comparison 24 hybs total
Project description:In the field, plants are challenged by more than one biotic stressor at the same time. In this study, the molecular interactions between potato (Solanum tuberosum L.), Colorado potato beetle (Leptinotarsa decemlineata Say; CPB) and Potato virus Y(NTN) (PVY(NTN) ) were investigated through analyses of gene expression in the potato leaves and the gut of the CPB larvae, and of the release of potato volatile compounds. CPB larval growth was enhanced when reared on secondary PVY(NTN) -infected plants, which was linked to decreased accumulation of transcripts associated with the antinutritional properties of potato. In PVY(NTN) -infected plants, ethylene signalling pathway induction and induction of auxin response transcription factors were attenuated, while no differences were observed in jasmonic acid (JA) signalling pathway. Similarly to rearing on virus-infected plants, CPB larvae gained more weight when reared on plants silenced in JA receptor gene (coi1). Although herbivore-induced defence mechanism is regulated predominantly by JA, response in coi1-silenced plants only partially corresponded to the one observed in PVY(NTN) -infected plants, confirming the role of other plant hormones in modulating this response. The release of β-barbatene and benzyl alcohol was different in healthy and PVY(NTN) -infected plants before CPB larvae infestation, implicating the importance of PVY(NTN) infection in plant communication with its environment. This was reflected in gene expression profiles of neighbouring plants showing different degree of defence response. This study thus contributes to our understanding of plant responses in agro-ecosystems.
Project description:A concise preparation of the pheromone secreted by the male Colorado potato beetle [viz. (3S)-1,3-dihydroxy-3,7-dimethyl-6-octen-2-one] was accomplished in four steps starting from 2-fluoronerol or 2-fluorogeraniol. The key step in the synthesis involves a 6-endo epoxide ring-opening with ester participation that simultaneously inverts the 3R-configuration of the (3R)-2,3-epoxy-2-fluoroprenyl acetate intermediate and installs the ketone functionality of the semiochemical. Extensive NMR studies validate the proposed 6-endo mechanism of the featured rearrangement, which under anhydrous conditions resulted in the formation of two bicyclic 1,3-dioxan-5-ones via an unprecedented intramolecular Prins cyclization.