Project description:In this study nanopore sequencing was applied to obtain sparse DNA methylation profiles from pediatric CNS tumor samples. A neural network was used to classify the tumor based on the obtained methylation profile.
Project description:The primary treatment of CNS tumors starts with a neurosurgical resection in order to obtain tumor tissue for diagnosis and to reduce tumor load and mass effect. The neurosurgeon has to decide between radical resection versus a more conservative strategy to prevent surgical morbidity. The prognostic impact of a radical resection varies between tumor types. However due to a lack of pre-operative tissue-based diagnostics, limited knowledge of the precise tumor type is available at the time of surgery. Current standard practice includes preoperative imaging and intraoperative histological analysis, but these are not always conclusive. After surgery, histopathological and molecular tests are performed to diagnose the precise tumor type. The results may indicate that an additional surgery is needed or that the initial surgery could have been less radical. Using rapid Nanopore sequencing, a sparse methylation profile can be directly obtained during surgery, making it ideally suited to enable intraoperative diagnostics. We developed a state-of-the-art neural-network approach called Sturgeon, to deliver trained models that are lightweight and universally applicable across patients and sequencing depths. We demonstrate our method to be accurate and fast enough to provide a correct diagnosis with as little as 20 to 40 minutes of sequencing data in 45 out of 49 pediatric samples, and inconclusive results in the other four. In four intraoperative cases we achieved a turnaround time of 60-90 minutes from sample biopsy to result; well in time to impact surgical decision making. We conclude that machine-learned diagnosis based on intraoperative sequencing can assist neurosurgical decision making, allowing neurological comorbidity to be avoided or preventing additional surgeries.
Project description:Ependymal tumors across age groups are currently classified and graded solely by histopathology. It is, however, commonly accepted that this classification scheme has limited clinical utility based on its lack of reproducibility in predicting patients' outcome. We aimed at establishing a uniform molecular classification using DNA methylation profiling. Nine molecular subgroups were identified in a large cohort of 500 tumors, 3 in each anatomical compartment of the CNS, spine, posterior fossa, supratentorial. Two supratentorial subgroups are characterized by prototypic fusion genes involving RELA and YAP1, respectively. Regarding clinical associations, the molecular classification proposed herein outperforms the current histopathological classification and thus might serve as a basis for the next World Health Organization classification of CNS tumors.
Project description:We have developed an ultra effective method of triggering fast cellular reprogramming into neural progenitor cells (NPCs) with significant yields, called ultrasound-directed permeation of environmental transition-guided cellular reprogramming (Entr).
Project description:We have developed an ultra effective method of triggering fast cellular reprogramming into neural progenitor cells (NPCs) with significant yields, called ultrasound-directed permeation of environmental transition-guided cellular reprogramming (Entr).
Project description:Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here, we present an ultra-fast scanning data-independent acquisition (DIA) strategy consisting on 2-Th precursor isolation windows, dissolving the differences between data-dependent and independent methods. This is achieved by pairing a Quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer that provides >200 Hz MS/MS scanning speed, high resolving power and sensitivity, as well as low ppm-mass accuracy. Narrowwindow DIA enables profiling of up to 100 full yeast proteomes per day, or ~10,000 human proteins in half-an-hour. Moreover, multi-shot acquisition of fractionated samples allows comprehensive coverage of human proteomes in ~3h, showing comparable depth to next-generation RNA sequencing and with 10x higher throughput compared to current state-of-the-art MS. High quantitative precision and accuracy is demonstrated with high peptide coverage in a 3-species proteome mixture, quantifying 14,000+ proteins in a single run in half-an-hour.
Project description:Mass spectrometry (MS)-based proteomics aims to characterize comprehensive proteomes in a fast and reproducible manner. Here, we present an ultra-fast scanning data-independent acquisition (DIA) strategy consisting on 2-Th precursor isolation windows, dissolving the differences between data-dependent and independent methods. This is achieved by pairing a Quadrupole Orbitrap mass spectrometer with the asymmetric track lossless (Astral) analyzer that provides >200 Hz MS/MS scanning speed, high resolving power and sensitivity, as well as low ppm-mass accuracy. Narrowwindow DIA enables profiling of up to 100 full yeast proteomes per day, or ~10,000 human proteins in half-an-hour. Moreover, multi-shot acquisition of fractionated samples allows comprehensive coverage of human proteomes in ~3h, showing comparable depth to next-generation RNA sequencing and with 10x higher throughput compared to current state-of-the-art MS. High quantitative precision and accuracy is demonstrated with high peptide coverage in a 3-species proteome mixture, quantifying 14,000+ proteins in a single run in half-an-hour.