Project description:To determine dose-dependent effects of metal exposure we performed microarray hybridizations with RNA isolated from Daphnia magna following Cu, Cd, and Zn exposures over a range of concentrations that included a tolerated concentration, a sublethal concentration, and a highly toxic concentration. The gene expression profiles revealed effects to digestion related genes, immune related genes, metallothioneins, and oxidative stress genes at the higher concentrations. We also observed that the highest concentrations produced less specific gene expression profiles than the lower concentrations suggesting a more general stress response at the higher concentrations. The lowest concentration tested, representing tolerated concentrations of the metals, caused differential expression of only a few genes and were distinct from the expression profiles of the higher concentrations. This result provides support for the presence of a No Observed Transcriptional Effect Level (NOTEL) for metal exposure in D. magna and suggests that gene expression analysis may offer a strategy for distinguishing between toxic and nontoxic concentrations of metals in the environment. Keywords: ecotoxicogenomic exposure study
Project description:This SuperSeries is composed of the following subset Series: GSE29854: Daphnia magna exposed to narcotics and polar narcotics - aniline GSE29856: Daphnia magna exposed to narcotics and polar narcotics - 4-chloroaniline GSE29857: Daphnia magna exposed to narcotics and polar narcotics - 3,5-dichloroaniline GSE29858: Daphnia magna exposed to narcotics and polar narcotics - 2,3,4-trichloroaniline GSE29862: Daphnia magna exposed to narcotics and polar narcotics - ethanol GSE29864: Daphnia magna exposed to narcotics and polar narcotics - isopropanol GSE29867: Daphnia magna exposed to narcotics and polar narcotics - methanol Refer to individual Series
Project description:Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna.
Project description:Custom D. magna gene expression microarray (Design ID: 023710, Agilent Technologies)were used to characterise gene expression profiles of Daphnia magna neoantes exposed to silver nanoparticles ( AgNPs ) or silver nitrate ( AgNO3 ) for 24 hours.
Project description:Nanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna. Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag+ release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media. All AgNWs were highly toxic to D. magna but less toxic than ionic silver. Toxicity varied as a function of AgNW dimension, coating, and solution chemistry. Ag+ release in the media could not account for observed AgNW toxicity. Single-particle inductively coupled plasma mass spectrometry distinguished and quantified dissolved and nanoparticulate silver in microliter-scale volumes of Daphnia magna hemolymph with a limit of detection of approximately 10 ppb. The silver levels within the hemolymph of Daphnia exposed to both Ag+ and AgNW met or exceeded the initial concentration in the growth medium, indicating effective accumulation during filter feeding. Silver-rich particles were the predominant form of silver in hemolymph following exposure to both AgNWs and Ag+. Scanning electron microscopy imaging of dried hemolymph found both AgNWs and silver precipitates that were not present in the AgNW stock or the growth medium. Both organic and inorganic coatings on the AgNW were transformed during ingestion or absorption. Pathway, gene ontology, and clustering analyses of gene expression response indicated effects of AgNWs distinct from ionic silver on Daphnia magna. Four replicates each of five toxicant exposure groups of ~20 animals and four replicates of control, unexposed animals. Each control was compared to each exposed data set for a total of 16 comparisons per chemical condition.
Project description:Comparison of female and male Daphnia magna gene expression with age. The sexes in Daphnia magna are genetically identical. The aim of this study was to identify possible differences in gene expression between genders with age.