Project description:In this study, we examined the transcriptomic responses to temperature acclimation (14oC, 20oC, and 25oC) in atrial and ventricular tissues of Pacific bluefin tuna (PBFT). A global gene expression analysis using a bluefin tuna-specific microarray indicated profound changes in expression of genes associated with energy metabolism, protein turnover, cellular stress response, oxidative stress and apoptosis. A principal component analysis revealed tissue-specific transcriptomic responses to temperature, with atrium at 25oC showing the greatest variation. Overall transcriptomic data suggests that PBFT can optimize cardiac function in the cold by acclimating to 14oC. Capacity to acclimate to colder temperatures potentially underlies this species ability to expand its vertical and horizontal thermal niche and migrate to colder oceans at high latitudes. In contrast, the cardiac phenotype of 25oC acclimated fish infers that PBFT hearts struggle to maintain cellular homeostasis and are subjected to programmed cell death. The goal of this study was to compare transcriptomic response to cold and warm temperature acclimations across cardiac tissues in Pacific bluefin tuna. Fish (n=4) were acclimated to 14C, 20C and 25C, and RNA was extracted from atrial, ventricular compact and spongy tissues. Experimental samples were hybridyzed against a reference pool that contained a mix of RNA from every sample.
Project description:Here we present genome-wide high-coverage genotyping data on a panel of 75 human samples from Western Balkan region, Europe, that are used in addition to public data in studing the genetic variation of Southern Europe that was sequenced to the avwerage depth of 1X.
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths.
Project description:Depth dependent (0-5,000 m) and seasonal variability in archaeal community structure in the subarctic and subtropical western North Pacific.
Project description:The community composition (in terms of abundance, distribution and contribution of diverse clades) of bacteria involved in nitrogen transformations in the oxygen minimum zones may be related to the rates of fixed N loss in these systems. The abundance of both denirifying and anammox bacteria, and the assemblage composition of denitrifying bacteria were investigated in the Eastern Tropical South Pacific and the Arabian Sea using assays based on molecular markers for the two groups of bacteria. The abundance and distribution of bacteria associated with the fixed N removal processes denitrification and anammox were investigated using quantitative PCR for genes encoding nitrite reductase (nirK and nirS) in denitrifying bacteria and hydrazine oxidase(hzo) and 16S rRNA genesin anammox bacteria. All of these genes had depth distributions with maxima associated with the secondary nitrite maximum in low oxygen waters. NirS was mch more abundant than nirK, and much more abundant than the 16S rRNA gene from anammox bacteria. The ratio of hzo:16S rRNA for anammox was low and variable implying greater unexplored diversity in the the hzo gene. Assemblage composition of the abundant nirS-type denitrifiers was evaluated using a funcitonal gene microarray. Of the nirS archetypes represented on the microarray, very few occurred speficically in one region or depth interval, but the assemblages varied significantly. Community composition of denitrifiers based on microarray analysis of the nirS gene was most different between geographical regions. Within each region, the surface layer and OMZ assemblages clustered distinctly. Thus, in addition to spatial and temporal variation in denitrificaiton and anammox rates, both microbial abundance and community composition also vary between OMZ regions and depths. Two color array (Cy3 and Cy5): the universal standard 20-mer oligo is printed to the slide with a 70-mer oligo (an archetype). Environmental DNA sequences (fluoresced with Cy3) within 15% of the 70-mer conjugated to a 20-mer oligo (fluoresced with Cy5) complementary to the universal standard will bind to the oligo probes on the array. Signal is the ratio of Cy3 to Cy5. Three replicate probes were printed for each archetype. Two replicate arrays were run on duplicate targets.
Project description:Here we present genome-wide high-coverage genotyping data on a panel of 75 human samples from Western Balkan region, Europe, that are used in addition to public data in studing the genetic variation of Southern Europe that was sequenced to the avwerage depth of 1X. 70 samples were analysed with the Illumina platform Human660W-Quad v1.0 Genotyping BeadChip and are described herein.
Project description:To examine the seasonal transcriptional landscape of medaka brain, we compared the gene expression of whole brain under SC (short-day and cool temperature conditions: 10 h light/14 h dark and 10 °C) and LW (long-day and warm temperature conditions: 14 h light/10 h dark and 26 °C) conditions.
Project description:To examine the seasonal transcriptional landscape of medaka brain, we compared the gene expression of whole brain under SC (short-day and cool temperature conditions: 10 h light/14 h dark and 10 °C) and LW (long-day and warm temperature conditions: 14 h light/10 h dark and 26 °C) conditions.