Project description:Microbiome sample-material model is a Named Entity Recognition (NER) model that identifies and annotates the material of microbiome samples in texts. This is the final model version used to annotate metagenomics publications in Europe PMC and enrich metagenomics studies in MGnify with sample-material metadata from literature.
For more information, please refer to the following blogs:
http://blog.europepmc.org/2020/11/europe-pmc-publications-metagenomics-annotations.html
https://www.ebi.ac.uk/about/news/service-news/enriched-metadata-fields-mgnify-based-text-mining-associated-publications
Project description:Chemostat incubations were established and inoculated with sediments collected from Canyon Creek, Calgary, Alberta, Canada. The chemostats experienced oxic-anoxic change of different frequency, High-frequency, Medium-frequency and Low-frequency. 18 samples were collected at the end of the final oxic phase and the final anoxic phase in the triplicated chemostats for metagenomic and metaproteomic analysis. 26 genomes were assembled from metagenomes. Proteomes were used to investigate translational regulation of each population associated with a genome.
Project description:RNA-seq evaluation of post-mortem human cerebelllum from 33 patients with diagnosed Essential tremor, compared to 22 age-matched control patients. Two samples were under-sequenced and therefore removed from the final analysis. The raw data has been included in this submission.
2019-07-26 | GSE134878 | GEO
Project description:Metagenomic sequencing from dairy farm samples
Project description:Supplementation of a Saccharomyces cerevisiae fermentation product modulates dairy cows health by reducing incidence and severity of mastitis, one of the most common and economically important diseases of the dairy industry. However, mechanisms remain unclear. We conducted a comprehensive molecular analysis, along with physiological data, on dairy cows supplemented for 45 days with NutriTek, a commercially available S. cerevisiae fermentation product, and then subjected to a mastitis challenge . NutriTek supplementation improved cow’s responses to a mastitis challenge by stimulating influx of immune cells to the mammary gland , enhancing their bactericidal capacity, and protecting mammary tissues from the side effect of an immune response allowing faster and more complete recovery from milk production drop
Project description:The bacterium Corynebacterium glutamicum can produce ʟ-glutamic acid under certain growth conditions. ʟ-glutamic acid is used as a flavor enhancer, food supplement, or primary chemical raw material. It, therefore, plays an essential economic role with an annual production of over 2½ million tons. Due to metabolic development, the product range of C. glutamicum has been expanded to include all biogenic amino acids, vitamins, and more. Previously published metabolic models of C. glutamicum have been supplemented with new metabolic data and expanded with data from new systems biology programs to result in this consensus model.
Project description:Next-Generation-Sequencing (NGS) technologies have led to important improvement in the detection of new or unrecognized infective agents, related to infectious diseases. In this context, NGS high-throughput technology can be used to achieve a comprehensive and unbiased sequencing of the nucleic acids present in a clinical sample (i.e. tissues). Metagenomic shotgun sequencing has emerged as powerful high-throughput approaches to analyze and survey microbial composition in the field of infectious diseases. By directly sequencing millions of nucleic acid molecules in a sample and matching the sequences to those available in databases, pathogens of an infectious disease can be inferred. Despite the large amount of metagenomic shotgun data produced, there is a lack of a comprehensive and easy-use pipeline for data analysis that avoid annoying and complicated bioinformatics steps. Here we present HOME-BIO, a modular and exhaustive pipeline for analysis of biological entity estimation, specific designed for shotgun sequenced clinical samples. HOME-BIO analysis provides comprehensive taxonomy classification by querying different source database and carry out main steps in metagenomic investigation. HOME-BIO is a powerful tool in the hand of biologist without computational experience, which are focused on metagenomic analysis. Its easy-to-use intrinsic characteristic allows users to simply import raw sequenced reads file and obtain taxonomy profile of their samples.