Project description:Synthetic microbial consortia represent a new frontier for synthetic biology given that they can solve more complex problems than monocultures. However, most attempts to co-cultivate these artificial communities fail because of the ‘‘winner-takes-all’’ in nutrients competition. In soil, multiple species can coexist with a spatial organization. Inspired by nature, here we show that an engineered spatial segregation method can assemble stable consortia with both flexibility and precision. We create microbial swarmbot consortia (MSBC) by encapsulating subpopulations with polymeric microcapsules. The crosslinked structure of microcapsules fences microbes, but allows the transport of small molecules and proteins. MSBC method enables the assembly of various synthetic communities and the precise control over the subpopulations. These capabilities can readily modulate the division of labor and communication. Our work integrates the synthetic biology and material science to offer new insights into consortia assembly and server as foundation to diverse applications from biomanufacturing to engineered photosynthesis.
Project description:We investigated whether two sympatric Arctic charr morphs (Salvelinus alpinus) with contrasting feeding ecology, the small-benthic (SB) and the planktivorous (PL) charr of Thingvallavatn in Iceland, exhibit genetically based differences in gene expression variability, and how dominance would affect their hybrids. Through a common-garden experiment, we identified genes clusters with similar expression variability, most differing among the two morphs. In the hybrids, gene expression variability was substantially affected by maternal effects and biases towards the PL charr, while the expression of a minority of genes felt outside the range of parental values. These profiles of expression variability were consistent across mRNA and miRNA datasets. Predominant maternal effects and PL charr biases were also observed at the level of average gene expression, including candidate genes involved in the lower jaw development.
Project description:<p>Benthic organisms sustain coral reefs through their growth and metabolism, but less is known about how their released metabolites influence reef seawater microorganisms. To investigate metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting algae, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry. Incubations with reef seawater microorganisms were conducted to monitor changes in microbial community composition using 16S rRNA gene sequencing and abundance in relation to exudate source and three specific metabolites. Exudates tended to be enriched in amino acids, nucleosides, and vitamins, indicating that benthic organisms contribute labile organic matter to reefs. The phytohormone indole-3-acetic acid was detected in octocoral exudates, suggesting that this metabolite facilitates microbial interactions within and outside of benthic organisms. Exudate compositions were species-specific and significantly enriched in the indole class of metabolites. Microbial abundances and specific microbial taxa responded differently in relation to exudates from stony corals and octocorals, demonstrating the link between benthic organismal composition, metabolite exudates, and microbial growth. Conversely, microbial communities did not respond to additions of the individual metabolites, suggesting that reef microorganisms likely provide diverse metabolite pools that support microbial growth. This work identifies, quantifies, and compares metabolites released from common Caribbean benthic organisms and indicates that recent shifts in benthic composition from stony to octocorals alter exudate composition and likely impact microbial community composition and function on coral reefs.</p><p><br></p><p><strong>UPLC-MS Metabolite uptake incubation assay</strong> is reported in the current study <strong>MTBLS3286</strong></p><p><strong>UPLC-MS Metabolite collection incubation assays</strong> are reported in <a href='https://www.ebi.ac.uk/metabolights/editor/study/MTBLS2855' rel='noopener noreferrer' target='_blank'><strong>MTBLS2855</strong></a></p>
Project description:<p>Benthic organisms sustain coral reefs through their growth and metabolism, but less is known about how their released metabolites influence reef seawater microorganisms. To investigate metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting algae, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry. Incubations with reef seawater microorganisms were conducted to monitor changes in microbial community composition using 16S rRNA gene sequencing and abundance in relation to exudate source and three specific metabolites. Exudates tended to be enriched in amino acids, nucleosides, and vitamins, indicating that benthic organisms contribute labile organic matter to reefs. The phytohormone indole-3-acetic acid was detected in octocoral exudates, suggesting that this metabolite facilitates microbial interactions within and outside of benthic organisms. Exudate compositions were species-specific and significantly enriched in the indole class of metabolites. Microbial abundances and specific microbial taxa responded differently in relation to exudates from stony corals and octocorals, demonstrating the link between benthic organismal composition, metabolite exudates, and microbial growth. Conversely, microbial communities did not respond to additions of the individual metabolites, suggesting that reef microorganisms likely provide diverse metabolite pools that support microbial growth. This work provides novel information about the metabolites released from common Caribbean benthic organisms and indicates that the recent shifts in benthic composition from stony to octocorals alter exudate composition and likely impact microbial community composition and function on coral reefs.</p><p><br></p><p><strong>UPLC-MS Metabolite collection incubation assays</strong> are reported in the current study <strong>MTBLS2855</strong></p><p><strong>UPLC-MS Metabolite uptake incubation assay</strong> is reported in <a href='https://www.ebi.ac.uk/metabolights/editor/study/MTBLS3286' rel='noopener noreferrer' target='_blank'><strong>MTBLS3286</strong></a></p>
Project description:Iron-sulfur minerals such as pyrite are found in many marine benthic habitats. At deep-sea hydrothermal vent sites they occur as massive sulfide chimneys. Hydrothermal chimneys formed by mineral precipitation from reduced vent fluids upon mixing with cold oxygenated sea water. While microorganisms inhabiting actively venting chimneys and utilizing reduced compounds dissolved in the fluids for energy generation are well studied, only little is known about the microorganisms inhabiting inactive sulfide chimneys. We performed a comprehensive meta-proteogenomic analysis combined with radiometric dating to investigate the diversity and function of microbial communities found on inactive sulfide chimneys of different ages from the Manus Basin (SW Pacific). Our study sheds light on potential lifestyles and ecological niches of yet poorly described bacterial clades dominating inactive chimney communities.