Project description:The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to facilitating the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, and decreases developmental stability. Further, by quantitative analysis of morphological phenotypes, we demonstrate that HSP90-reduction increases phenotypic diversity in both seedlings and adult plants. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a central interface between organism, development, and environment. Experiment Overall Design: Three differerent experiments were performed. One experiment included lines RNAi-A1, RNAi-A3, and Control-2, with two biological replicates and one technical replicate per line. The second included lines RNAi-A2, RNAi-B1, RNAi-C1, Control-1, and Control-3, with three biological replicates per line. The third included the three single-isoform T-DNA insertion lines, along with the Col-0 control, with three biological replicates per line. See Sangster et al. "Phenotypic Diversity and Altered Environmental Plasticity in Arabidopsis thaliana with Reduced HSP90 Levels" for details of construct construction and further experimental rationale.
Project description:The molecular chaperone HSP90 aids the maturation of a diverse but select set of metastable protein clients, many of which are key to a variety of signal transduction pathways. HSP90 function has been best investigated in animal and fungal systems, where inhibition of the chaperone has exceptionally diverse effects, ranging from reversing oncogenic transformation to facilitating the acquisition of drug resistance. Inhibition of HSP90 in the model plant Arabidopsis thaliana uncovers novel morphologies dependent on normally cryptic genetic variation and increases stochastic variation inherent to developmental processes. The biochemical activity of HSP90 is strictly conserved between animals and plants. However, the substrates and pathways dependent on HSP90 in plants are poorly understood. Progress has been impeded by reliance on light-sensitive HSP90 inhibitors due to redundancy in the A. thaliana HSP90 gene family. Here we present phenotypic and genome-wide expression analyses of A. thaliana with constitutively reduced HSP90 levels achieved by RNAi targeting. HSP90 reduction affects a variety of quantitative life-history traits, including flowering time and total seed set, and decreases developmental stability. Further, by quantitative analysis of morphological phenotypes, we demonstrate that HSP90-reduction increases phenotypic diversity in both seedlings and adult plants. Several morphologies are synergistically affected by HSP90 and growth temperature. Genome-wide expression analyses also suggest a central role for HSP90 in the genesis and maintenance of plastic responses. The expression results are substantiated by examination of the response of HSP90-reduced plants to attack by caterpillars of the generalist herbivore Trichoplusia ni. HSP90 reduction potentiates a more robust herbivore defense response. In sum, we propose that HSP90 exerts global effects on the environmental responsiveness of plants to many different stimuli. The comprehensive set of HSP90-reduced lines described here is a vital instrument to further examine the role of HSP90 as a central interface between organism, development, and environment. Keywords: HSP90, mutant comparison
Project description:Expression of the F-Box protein Leaf Curling Responsiveness (LCR) is regulated by microRNA, miR394, and alterations to this interplay in Arabidopsis thaliana produce defects in leaf polarity and shoot apical meristem (SAM) organisation. Although the miR394-LCR node has been documented in Arabidopsis, the identification of proteins targeted by LCR F-box itself has proven problematic. Here, a proteomic analysis of shoot apices from plants with altered LCR levels identified a member of the Major Latex Protein (MLP) family gene as a potential LCR F-box target. Bioinformatic and molecular analyses also suggested that other MLP family members are likely to be targets for this post-translational regulation. Direct interaction between LCR F-Box and MLP423 was validated. Additional MLP members had reduction in protein accumulation, in varying degrees, mediated by LCR F-Box. Transgenic Arabidopsis lines, in which MLP28 expression was reduced through an artificial miRNA technology, displayed severe developmental defects, including changes in leaf patterning and morphology, shoot apex defects, and eventual premature death. These phenotypic characteristics resemble those of Arabidopsis plants modified to over-express LCR. Taken together, the results demonstrate that MLPs are driven to degradation by LCR, and indicate that MLP gene family is target of miR394-LCR regulatory node, representing potential targets for directly post-translational regulation mediated by LCR F-Box. In addition, MLP28 family member is associated with the LCR regulation that is critical for normal Arabidopsis development.
Project description:mRNA levels in Wild-type versus ddm1 Arabidopsis thaliana seedlings and bolting plants. Features found to be significantly enriched for DNA methylation were determined. This SuperSeries is composed of the following subset Series: GSE1324: EV23+24 mRNA levels in Wild-type versus ddm1/+ backcross bolting Arabidopsis thaliana plants GSE1325: EV33+34 mRNA levels in Wild-type versus ddm1 Arabidopsis thaliana seedlings GSE1326: VC109+111 mRNA levels in Wild-type versus ddm1 Arabidopsis thaliana seedlings GSE1327: EV39+40 mRNA levels in Wild-type versus ddm1 Arabidopsis thaliana seedlings GSE1328: VC110+112 mRNA levels in Wild-type versus ddm1 bolting Arabidopsis thaliana plants Refer to individual Series
Project description:Epigenetic variation can impact gene transcription and may play roles in phenotypic diversity and adaptation. Here we report 1,107 high quality single-base resolution methylomes, and 1,210 transcriptomes from the 1001 Arabidopsis Genomes population. Analyses reveal strong effects of geographic origin on average DNA methylation levels, alterations of gene expression by epialleles and a highly complex genetic basis for DNA methylation. Physical genome maps for nine of the most diverse accessions revealed how transposable elements and other structural variations shaped the epigenome to allow rapid adaptation to environmental changes, with strong emphasis on disease resistance. Analysis of the cistromes and epicistromes in these accessions revealed a significant association between both methylation and nucleotide variation and the conservation of transcription factor binding sites. The Arabidopsis thaliana 1001 Epigenomes Project now provides a comprehensive resource to help further understand how epigenetic variation contributes to both molecular and phenotypes in natural populations of the most widely studied reference plant.