Project description:Androgen Receptor (AR) is essential for the growth and progression of prostate cancer in both hormone-sensitive and hormone-refractory disease. We have designed a sequence-specific DNA binding polyamide (1) that targets the consensus androgen response element (ARE). This polyamide binds the PSA promoter ARE, inhibits androgen-induced expression of PSA and several other AR-regulated genes in cultured prostate cancer cells, and reduces AR occupancy at the PSA promoter and enhancer. Down-regulation of PSA by this polyamide was comparable to that produced by the synthetic anti-androgen bicalutamide (Casodex) at the same concentration. Genome-wide expression analysis reveals that a similar number of transcripts are affected by treatment with the polyamide and with bicalutamide. Direct inhibition of AR-DNA binding by sequence-specific DNA binding small molecules could offer an alternative approach to antagonizing AR activity. A polyamide (2) that targets a different DNA sequence is included as a control. Experiment Overall Design: DHT (dihydrotestosterone)-stimulated LNCaP cells that were treatment with polyamide 1, polyamide 2, bicalutamide were compared to control cells that were also DHT-stimulated. Cells not stimulated with DHT were also compared to the DHT-stimulated controls. Three biological replicates were included for each treatment/condition except the no-DHT induced controls, which were in biological duplicate.
Project description:Androgen Receptor (AR) is essential for the growth and progression of prostate cancer in both hormone-sensitive and hormone-refractory disease. We have designed a sequence-specific DNA binding polyamide (1) that targets the consensus androgen response element (ARE). This polyamide binds the PSA promoter ARE, inhibits androgen-induced expression of PSA and several other AR-regulated genes in cultured prostate cancer cells, and reduces AR occupancy at the PSA promoter and enhancer. Down-regulation of PSA by this polyamide was comparable to that produced by the synthetic anti-androgen bicalutamide (Casodex) at the same concentration. Genome-wide expression analysis reveals that a similar number of transcripts are affected by treatment with the polyamide and with bicalutamide. Direct inhibition of AR-DNA binding by sequence-specific DNA binding small molecules could offer an alternative approach to antagonizing AR activity. A polyamide (2) that targets a different DNA sequence is included as a control. Keywords: Gene expression changes in cultured LNCaP cells after DHT-stimulation and various treatment conditions
Project description:The crucial role of androgen receptor in prostate cancer development is well documented, and its inhibition is a mainstay of prostate cancer treatment. Here we analyze the perturbations to the androgen receptor cistrome caused by a minor groove binding molecule that is designed to target a sequence found in a subset of androgen response elements. We find treatment with this pyrrole-imidazole polyamide exhibits sequence selectively in its repression of androgen receptor binding in vivo. Differentially changed loci are enriched for sequences resembling ARE half-sites that match the Py-Im polyamide binding preferences determined in vitro. Comparatively, permutations of ARE half-site bearing single or double mismatches to the Py-Im polyamide binding sequence are not enriched. This study represents an indirect determination of Py-Im polyamide binding preference in vivo using an unbiased approach.
Project description:Analysis of dexamethasone-stimulated A549 lung adenocarcinoma epithelial cells treated with a glucocorticoid response (GR) element (GRE) specific DNA binding polyamide. Polyamide designed to target the sequence 5'-WGWWCW-3' and disrupt GR-mediated gene expression. Effects of the GR antagonist mifepristone also examined.
Project description:Analysis of dexamethasone-stimulated A549 lung adenocarcinoma epithelial cells treated with a glucocorticoid response (GR) element (GRE) specific DNA binding polyamide. Polyamide designed to target the sequence 5'-WGWWCW-3' and disrupt GR-mediated gene expression. Effects of the GR antagonist mifepristone also examined. Experiment Overall Design: A549 cells were treated with compounds for 48 hours before RNA extraction and hybridization on Affymetrix microarrays.
Project description:Transcription mediated by hypoxia inducible factor (HIF-1) contributes to tumor angiogenesis and metastasis but is also involved in the activation of cell-death pathways and normal physiological processes. Given the complexity of HIF-1 signaling it could be advantageous to target a subset of HIF-1 effectors rather than the entire pathway. We compared the genome-wide effects of three molecules that each interfere with the HIF-1-DNA interaction: a polyamide targeted to the hypoxia response element (HRE), siRNA targeted to HIF-1α, and echinomycin, a DNA binding natural product with a similar but less specific sequence preference to the polyamide. The polyamide affects a subset of hypoxia-induced genes that are consistent with the binding site preferences of the polyamide. For comparison, siRNA targeted to HIF-1α and echinomycin each affect the expression of nearly every gene induced by hypoxia. Remarkably, the total number of genes affected by either polyamide or HIF-1α siRNA over a range of thresholds is comparable. The data shows how polyamides can be used to affect a subset of a pathway regulated by a transcription factor. In addition, this study offers a unique comparison of three complementary approaches towards exogenous control of endogenous gene expression. Experiment Overall Design: Hypoxia-mimetic DFO (deferoxamine)-stimulated U251 cells that were treated with polyamide 1, HIF-1α siRNA, and echinomycin were compared to control cells that were also DFO-stimulated. Cells not stimulated with DFO were also compared to the DFO-stimulated controls. Three biological replicates were included for each treatment/condition.
Project description:Transcription mediated by hypoxia inducible factor (HIF-1) contributes to tumor angiogenesis and metastasis but is also involved in the activation of cell-death pathways and normal physiological processes. Given the complexity of HIF-1 signaling it could be advantageous to target a subset of HIF-1 effectors rather than the entire pathway. We compared the genome-wide effects of three molecules that each interfere with the HIF-1-DNA interaction: a polyamide targeted to the hypoxia response element (HRE), siRNA targeted to HIF-1α, and echinomycin, a DNA binding natural product with a similar but less specific sequence preference to the polyamide. The polyamide affects a subset of hypoxia-induced genes that are consistent with the binding site preferences of the polyamide. For comparison, siRNA targeted to HIF-1α and echinomycin each affect the expression of nearly every gene induced by hypoxia. Remarkably, the total number of genes affected by either polyamide or HIF-1α siRNA over a range of thresholds is comparable. The data shows how polyamides can be used to affect a subset of a pathway regulated by a transcription factor. In addition, this study offers a unique comparison of three complementary approaches towards exogenous control of endogenous gene expression. Keywords: Gene expression changes in cultured U251 cells after DFO-stimulation and various treatment conditions