Project description:Background: Mechanical ventilation causes ventilator-induced lung injury in animals and humans. Mitogen-activated protein kinases have been implicated in ventilator-induced lung injury though their functional significance remains incomplete. We characterize the role of p38 mitogen-activated protein kinase/ mitogen activated protein kinase kinase-3 and c-Jun-NH2-terminal kinase-1 in ventilator-induced lung injury and investigate novel independent mechanisms contributing to lung injury during mechanical ventilation. Methodology and Principle Findings: C57/BL6 wild-type mice and mice genetically deleted for mitogen-activated protein kinase kinase-3 (mkk-3-/-) or c-Jun-NH2-terminal kinase-1 (jnk1-/-) were ventilated, and lung injury parameters were assessed. We demonstrate that mkk3-/- or jnk1-/- mice displayed significantly reduced inflammatory lung injury and apoptosis relative to wild-type mice. Since jnk1-/- mice were highly resistant to ventilator-induced lung injury, we performed comprehensive gene expression profiling of ventilated wild-type or jnk1-/- mice to identify novel candidate genes which may play critical roles in the pathogenesis of ventilator-induced lung injury. Microarray analysis revealed many novel genes differentially expressed by ventilation including matrix metalloproteinase-8 (MMP8) and GADD45a. Functional characterization of MMP8 revealed that mmp8-/- mice were sensitized to ventilator-induced lung injury with increased lung vascular permeability. Conclusions: We demonstrate that mitogen-activated protein kinase pathways mediate inflammatory lung injury during ventilator-induced lung injury. C-Jun-NH2-terminal kinase was also involved in alveolo-capillary leakage and edema formation, whereas MMP8 inhibited alveolo-capillary protein leakage. Keywords: response to injury, genetically modified mouse
Project description:To study the effects of previous exposure to mechanical ventilation may modify the development of Ventilator-induced lung injury, preconditioning was induced by low-pressure ventilation for 90 minutes. After 1 week, intact (sham) and preconditioned mice were sacrificed, the lungs extracted and gene expression measured in order to identify differences responsible for the observed tolerance to ventilator-induced lung injury observed in preconditioned animals. 6 samples were analyzed, from 3 intact (sham) and 3 preconditioned CD1 mice.
Project description:Rationale: Using an ortholog candidate gene approach, we previously identified GADD45a (growth arrest and DNA damage-inducible gene 45a) as a potential novel candidate involved in ventilator-induced lung injury (VILI). Objectives: We investigated whether genetically engineered mice with GADD45a deletion were more susceptible to ventilator- or endotoxin (LPS)-induced lung injury. We employed genomic strategies to explore the mechanistic involvement of GADD45a in inflammatory lung injury. Methods: Wild-type C57Bl/6 and GADD45a-/- mice were phenotyped for lung injury following exposure to high tidal volume ventilation (VILI) or intratracheal LPS. Whole lung homogenates were utilized for gene expression studies of ventilated animals and spontaneously breathing controls. To explore the consequences of GADD45a depletion on lung vascular permeability, electrical resistance was measured using human endothelial cells (EC) transfected with small interfering RNA (siRNA) specific for GADD45a or control sequence, or with active Akt1/PKBï¡ cDNA. Results: Mice harboring deletion of GADD45a were modestly susceptible to LPS-induced injury and profoundly susceptible to VILI, demonstrating increased inflammation and increased microvascular permeability. VILI-exposed GADD45a-/- mice manifested striking neutrophilic alveolitis and increased levels of BAL protein, IgG, and inflammatory cytokines. Expression profiling revealed strong dysregulation in the B cell receptor signaling pathway in GADD45a-/- mice, with involvement of several PI3K/Akt signaling components. Akt protein and phospho-Akt were reduced in GADD45a-/- lungs. Further, human EC with reduced GADD45a (siRNA) exhibited potentiated LPS-induced barrier dysfunction, which was attenuated by overexpressing active Akt1. Conclusions: GADD45a, which modulates Akt availability, is a significant participant in modulating vascular permeability and susceptibility to VILI. Experiment Overall Design: 4 experimental groups, each with 3 mouses. Wild type control group, VILI group, GADD-/- group, GADD-/- and VILI group.
Project description:WT mice and claudin 4 KO mice were exposed to ventilator-induced lung injury (VILI) for 2 hours. We found that in some Cldn4 KO mice, injury was similar to WT, while in others, injury was higher, as assessed by amount of protein leak into broncho-alveolar lavage fluid. We performed RNAseq to find which genes were responsible for higher injury in Cldn4 KO mice. WT mice and claudin 4 KO mice were exposed to ventilator-induced lung injury (VILI) for 2 hours. RNA were extracted from whole lungs and RNA sequencing was performed. The samples are (all in duplicates): WT no VILI, Cldn4 KO no VILI, WT VILI, Cldn4 KO VILI with similar injury to WT (Cldn4 KOlow), and Cldn4 KO VILI with higher injury than WT (Cldn4 KOhigh)
Project description:To study the effects of previous exposure to mechanical ventilation may modify the development of Ventilator-induced lung injury, preconditioning was induced by low-pressure ventilation for 90 minutes. After 1 week, intact (sham) and preconditioned mice were sacrificed, the lungs extracted and gene expression measured in order to identify differences responsible for the observed tolerance to ventilator-induced lung injury observed in preconditioned animals.
Project description:BACKGROUND & AIMS: c-Jun N-terminal kinase (JNK)1 and JNK2 are expressed in hepatocytes and have overlapping and distinct functions. JNK proteins are activated, via phosphorylation, in response to acetaminophen- or CCl4-induced liver damage; the level of activation correlates with the degree of injury. SP600125, a JNK inhibitor, has been reported to block acetaminophen-induced liver injury. We investigated the role of JNK in drug-induced liver injury (DILI) in liver tissues from patients and in mice with genetic deletion of JNK in hepatocytes. METHODS: We studied liver sections from patients with DILI (due to acetaminophen, phenprocoumon, non-steroidal anti-inflammatory drugs or autoimmune hepatitis), or patients without acute liver failure (controls), collected from a DILI Biobank in Germany. Levels of total and activated (phosphorylated) JNK were measured by immunohistochemistry and western blotting. Mice with hepatocyte-specific deletion of Jnk1 (Jnk1Îhepa) or combination of Jnk1 and Jnk2 (JnkÎhepa), as well as Jnk1-floxed C57BL/6 (control) mice, were given injections of CCl4 (to induce fibrosis) or acetaminophen (to induce toxic liver injury). We performed gene expression microarray, and phosphoproteomic analyses to determine mechanisms of JNK activity in hepatocytes. RESULTS: Liver samples from DILI patients contained more activated JNK, predominantly in nuclei of hepatocytes and in immune cells, than healthy tissue. Administration of acetaminophen to JnkÎhepa mice produced a greater level of liver injury than that observed in Jnk1Îhepa or control mice, based on levels of serum markers and microscopic and histologic analysis of liver tissues. Administration of CCl4 also induced stronger hepatic injury in JnkÎhepa mice, based on increased inflammation, cell proliferation, and fibrosis progression, compared to Jnk1Îhepa or control mice. Hepatocytes from JnkÎhepa mice given acetaminophen had an increased oxidative stress response, leading to decreased activation of AMPK, total protein AMPK levels, and pJunD and subsequent necrosis. Administration of SP600125 before or with acetaminophen protected JnkÎhepa and control mice from liver injury. CONCLUSIONS: In hepatocytes, JNK1 and JNK2 appear to have combined effects in protecting mice from CCl4- and acetaminophen-induced liver injury. It is important to study the tissue-specific functions of both proteins, rather than just JNK1, in the onset of toxic liver injury. JNK inhibition with SP600125 shows off-target effects. Livers and primary hepatocytes were isolated from wild type and JNKÎhepa (Jnk1Îhepa/global Jnk2-/-) double-knockout mice and subjected to gene expression profiling.