Project description:Brown macroalgae holds an enormous potential as a future feedstock because it rapidly forms large biomasses and has high carbohydrate content (35% of its dry weight consists of alginate and mannitol). However, utilization of brown macroalgae by conventional microbial platforms (e.g., Escherichia coli and Saccharomyces cerevisiae) has been limited due to the inability of these platforms to metabolize alginate. Although recent studies engineered them to utilize alginate, their growth rates and metabolic activities are still too low for industrial applications, likely due to the unoptimized expression of multiple xenogeneic genes. Here, we isolated Vibrio sp. dhg, a novel, fast-growing bacterium that has been naturally evolved for efficient alginate assimilation (growth rate = 0.98 h-1). Especially, both the growth rate and sugar uptake rate of V. sp. dhg are substantially higher than the rates of E. coli for most biomass-derivable sugars. Based on our systematic characterization of its metabolism and gene expression architecture, we were able to develop a genetic toolbox for its engineering. By using this microorganism, we successfully demonstrated its ability to produce a broad spectrum of chemicals from alginate-mannitol mixtures with high productivities (1.1 g ethanol/L/h, 1.3 g 2,3-butanediol and acetoin/L/h, and 0.69 mg lycopene/L/h). Collectively, the V. sp. dhg strain is a powerful platform for the conversion of brown macroalgae sugars whose usage will dramatically accelerate the production of value-added biochemicals in the future.
Project description:The molecular mechanisms of ethanol toxicity and tolerance in bacteria, while important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and revealed multiple mechanisms of tolerance, but it remains difficult to separate direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, then characterized the mechanisms of toxicity and resistance associated with select mutations. Evolved alleles of metJ, rho, and rpsQ were sufficient to recapitulate much of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. We found that ethanol induces mistranslation errors during protein synthesis, and that the evolved rpsQ allele protects cells by rendering the ribosome hyper-accurate. Ribosome profiling and RNAseq analyses of the ethanol-tolerant strain versus the wild type established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ protect central dogma processes in the presence of ethanol.
Project description:The molecular mechanisms of ethanol toxicity and tolerance in bacteria, while important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and revealed multiple mechanisms of tolerance, but it remains difficult to separate direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, then characterized the mechanisms of toxicity and resistance associated with select mutations. Evolved alleles of metJ, rho, and rpsQ were sufficient to recapitulate much of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. We found that ethanol induces mistranslation errors during protein synthesis, and that the evolved rpsQ allele protects cells by rendering the ribosome hyper-accurate. Ribosome profiling and RNAseq analyses of the ethanol-tolerant strain versus the wild type established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ protect central dogma processes in the presence of ethanol.
Project description:The molecular mechanisms of ethanol toxicity and tolerance in bacteria, while important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and revealed multiple mechanisms of tolerance, but it remains difficult to separate direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, then characterized the mechanisms of toxicity and resistance associated with select mutations. Evolved alleles of metJ, rho, and rpsQ were sufficient to recapitulate much of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. We found that ethanol induces mistranslation errors during protein synthesis, and that the evolved rpsQ allele protects cells by rendering the ribosome hyper-accurate. Ribosome profiling and RNAseq analyses of the ethanol-tolerant strain versus the wild type established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ protect central dogma processes in the presence of ethanol. RNA-seq comparison of wild-type and mutant strains to assess readthrough of Rho-dependent transcriptional terminators
Project description:The molecular mechanisms of ethanol toxicity and tolerance in bacteria, while important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and revealed multiple mechanisms of tolerance, but it remains difficult to separate direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, then characterized the mechanisms of toxicity and resistance associated with select mutations. Evolved alleles of metJ, rho, and rpsQ were sufficient to recapitulate much of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. We found that ethanol induces mistranslation errors during protein synthesis, and that the evolved rpsQ allele protects cells by rendering the ribosome hyper-accurate. Ribosome profiling and RNAseq analyses of the ethanol-tolerant strain versus the wild type established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ protect central dogma processes in the presence of ethanol. Examination of wild-type and mutant strains at three different time points (one pre-ethanol-stress, two post-ethanol-stress)
Project description:The interplay between phenotypic plasticity and adaptive evolution has long been an important topic of evolutionary biology. This process is critical to our understanding of a species evolutionary potential in light of rapid climate changes. Despite recent theoretical work, empirical studies of natural populations, especially in marine invertebrates, are scarce. In this study, we investigated the relationship between adaptive divergence and plasticity by integrating genetic and phenotypic variation in Pacific oysters from its natural range in China. Genome resequencing of 371 oysters revealed unexpected fine-scale genetic structure that is largely consistent with phenotypic divergence in growth, physiology, thermal tolerance and gene expression across environmental gradient. These findings suggest that selection and local adaptation are pervasive and together with limited gene flow shape adaptive divergence. Plasticity in gene expression is positively correlated with evolved divergence, indicating that plasticity is adaptive and likely favored by selection in organisms facing dynamic environments such as oysters. Divergence in heat response and tolerance implies that the evolutionary potential to a warming climate differs among oyster populations. We suggest that trade-offs in energy allocation are important to adaptive divergence with acetylation playing a role in energy depression under thermal stress.
Project description:Evolutionary engineering strategy was used for selection of ethanol-tolerant Saccharomyces cerevisiae clones under gradually increasing ethanol stress levels. Clones B2 and B8 were selected based on their higher ethanol-tolerance and higher ethanol production levels. Whole genome microarray analysis was used for identifying the gene expression levels of these two evolved clones compared to the reference strain.