Project description:Optimize SNP genotyping probes and demonstrate a new P. falciparum microarray platform that includes CGH and resequencing probes on the same chip
Project description:In the present study, we performed HITS-CLIP analysis for FUS using mouse brain to extensively characterize tits RNA-binding sites and functional roles in RNA metabolisms. We identified preferential binding of FUS to stem-and-loop structures but without any discernible consensus motifs. FUS was preferentially bound to introns and 3' untranslated regions, but the exon/intron boundaries were mostly devoid of FUS-tags. Analysis of position-dependence of FUS-binding sites in regulating inclusion and skipping of exons disclosed that FUS is bound broadly around the alternatively spliced exons. Among them, however, noticeable CLIP-tags were observed in the downstream introns. We also noticed that FUS occasionally binds to the antisense strands in the promoter regions. Global analysis of CLIP-tags and expression profiles revealed that binding of FUS to the promoter antisense regions downgregulates transcription of the sense strand. HITS-CLIP (High Throughput Sequencing after Crosslinking and Immunoprecipitation) experiments targeting FUS in mouse cerebrums derived from 12-week-old C57BL/6 mice
Project description:Illumina human Omni5Exome arrays were used to investigate CNVs in Sѐzary syndrome tumours as part of a larger study involving whole exome sequencing of the same samples and targeted resequencing of a further cohort.
Project description:Pluripotency is established in E4.5 preimplantation epiblast. Embryonic stem cells (ESCs) represent the immortalization of pluripotency, however, they only partially resemble the gene expression signature of developmental ground-state. Induced PRAMEL7 expression, a protein highly expressed in the ICM but lowly expressed in ESCs, reprograms developmentally advanced ESC+serum into ground-state pluripotency by inducing a gene expression signature close to developmental ground-state. However, how PRAMEL7 reprograms gene expression remains elusive. Here we show that PRAMEL7 associates with Cullin2 (CUL2) and this interaction is required to establish ground-state gene expression. PRAMEL7 recruits CUL2 to chromatin and targets for proteasomal degradation regulators of repressive chromatin, including NuRD complex. PRAMEL7 antagonizes NuRD-mediated repression of genes implicated in pluripotency by decreasing NuRD stability and promoter association in a CUL2-dependent manner. Our data link proteasome degradation pathways to ground-state gene expression, offering insights to generate in vitro models to reproduce the in vivo ground-state pluripotency.
Project description:We apply deep small-RNA sequencing technology for high-throughput profiling of microRNAs in ground state embryonic stem cells (ESCs). We provide global expression signatures of microRNAs in ESCs cultured under serum, 2i, and R2i conditions. We report that microRNAs are significantly differentially expressed when ESCs are cultured under different conditions, and that ground state pluripotency features a uniqure microRNA signature which is mainly encoded by microRNA-coding sequences within the developmentally important DLK1-Dio3 locus. Finally, we indicate that microRNA upregulated in ground state pluripotent cells (i.e. 2i/R2i) contribute to the maintenace of ground state pluripotency through stimulating self-renewal and inhibiting multi-lineague differentiation.