Project description:Protein abundance changes and reversible protein phosphorylation (RPP) play important roles in regulating hypometabolism but have never been documented in overwintering frogs at high altitudes. To test the hypothesis that protein abundance and protein phosphorylation change in response to winter hibernation, we conducted a comprehensive and quantitative proteomic and phosphoproteomic analysis of the liver of the Xizang plateau frog, Nanorana parkeri, living on the Qinghai-Tibet Plateau.
2024-05-22 | PXD042165 | Pride
Project description:Methanogenic archaea in lakes of Qinghai-Tibet Plateau
Project description:Campeiostachys nutans, a dominant perennial grass in the Qinghai-Tibet Plateau, exhibits high tolerance to salt stress. The Salt Overly Sensitive (SOS) pathway is key to plant salt stress tolerance. However, the pivotal role of the SOS pathway in response to salt stress in C. nutans remains unknown. Here, we identified CnbHLH130 as a novel transcriptional activator of CnCBL10, directly binds to the G-box motif in the promoter. CnbHLH130 responds to salt stress and positively regulate salt tolerance in rice and C. nutans. Interestingly, we found CnCBL10 and CnCIPK4 interact with CnbHLH130 by a Y2H screening assay. The interactions were confirmed by split-luciferase complementation (split-LUC), Pull-down, Co-immunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC) assays. Moreover, CnbHLH130 enhanced the interaction between CnCBL10 and CnCIPK4, which further phosphorylate and activate Na+/H+ antiporter CnSOS1 to exclude excess cytosolic Na+ from cells in the shoots. Genetic evidence showed that CnCBL10, CnCIPK4 and CnbHLH130 coordinately regulates salt tolerance in plants. In summary, this study demonstrated that CnbHLH130 acts as a novel core component and transcriptional activator regulating CnCBL10-CnCIPK4 mediated SOS pathway, thus conferring to the salt tolerance in C. nutans. This work advanced our understandings of how an alpine plant greatly survived in the Qinghai-Tibet Plateau by concise regulation of the SOS pathway in response to salt stress.
Project description:Long term-exposed to high altitude, the increased numbers of red blood cells tend to stabilize to a certain extend in most people, but someone will occur over-increasing in number of red blood cells, which cause a serious of clinical symptoms and signs, and this is high altitude polycythemia. EPO-EPOR system may be the main reasons for erythroid progenitor cell proliferation and differentiation in early exposion to plateau, but, in the late, there may be other factors involved in the regulation of erythropoiesis in bone marrow, multiple factors working together lead to excessive red blood cell proliferation. We compared gene expression profiling of leukocytes in peripheral blood from high altitude polycythemia patients with those from matched controls. Subjects consisting of 5 masculine Han Chinese patients with HAPC (diagnosed according to international consensus statement on HAPC) and 5 matched controls, were migrants at River of TUOTUO area (Qinghai-Tibetan Plateau, 4550 m). Each of the five HAPC patients was matched to each of the control: gender, nationality, birthplace, duration migrating to plateau, height of location, work intensity. Peripheral blood samples were obtained at 4550m plateau from above subjects. Total RNA was extracted from peripheral blood leucocytes. The gene expression profilings were analysed by Human Genome U133 Plus 2.0 Array.