Project description:Ricin is a potential bioweapon because of its toxicity, availability, and ease of production. When delivered to the lungs, ricin causes severe pulmonary damage with symptoms that are similar to those observed in acute lung injury and adult respiratory distress syndrome. The airway epithelium plays an important role in the pathogenesis of many lung diseases, but its role in ricin intoxication has not been elucidated. Exposure of cultured primary human airway epithelial cells to ricin resulted in the activation of stress-activated protein kinases (SAPKs) and NF-κB and in the increased expression of multiple proinflammatory molecules. Among the genes upregulated by ricin and identified by microarray analysis were those associated with transcription, nucleosome assembly, inflammation, and response to stress. Sequence analysis of the promoters of these genes identified NF-κB as one of the transcription factors whose binding sites were over-represented. Although airway cells secrete TNF-α in response to ricin, blocking TNF-α did not prevent ricin-induced activation of NF-κB. Inhibition of p38 MAPK by a chemical inhibitor and NF-κB by short interfering RNA resulted in a marked reduction in the expression of proinflammatory genes, demonstrating the importance of these two pathways in ricin intoxication. Therefore, the p38 MAPK and NF-κB pathways are potential therapeutic targets for reducing the inflammatory consequences of ricin poisoning. Keywords: Comparative genomic hybridization
Project description:Ricin is a potential bioweapon because of its toxicity, availability, and ease of production. When delivered to the lungs, ricin causes severe pulmonary damage with symptoms that are similar to those observed in acute lung injury and adult respiratory distress syndrome. The airway epithelium plays an important role in the pathogenesis of many lung diseases, but its role in ricin intoxication has not been elucidated. Exposure of cultured primary human airway epithelial cells to ricin resulted in the activation of stress-activated protein kinases (SAPKs) and NF-κB and in the increased expression of multiple proinflammatory molecules. Among the genes upregulated by ricin and identified by microarray analysis were those associated with transcription, nucleosome assembly, inflammation, and response to stress. Sequence analysis of the promoters of these genes identified NF-κB as one of the transcription factors whose binding sites were over-represented. Although airway cells secrete TNF-α in response to ricin, blocking TNF-α did not prevent ricin-induced activation of NF-κB. Inhibition of p38 MAPK by a chemical inhibitor and NF-κB by short interfering RNA resulted in a marked reduction in the expression of proinflammatory genes, demonstrating the importance of these two pathways in ricin intoxication. Therefore, the p38 MAPK and NF-κB pathways are potential therapeutic targets for reducing the inflammatory consequences of ricin poisoning. Experiment Overall Design: Control RNA from untreated primary human airway cells was compared to RNA from ricin-treated airway cells
Project description:In response to DNA double strand breaks (DSBs), the ATM kinase activates NF-κB factors to stimulate gene expression changes that promote survival and allow time for cells to repair damage. In cell lines, ATM can activate NF-κB transcription factors via two independent, convergent mechanisms. One is ATM-mediated phosphorylation of nuclear NF-κB essential modulator (Nemo) protein, which leads to monoubiquitylation and export of Nemo to the cytoplasm where it engages the IκB kinase (IKK) complex to activate NF-κB. Another is DSB-triggered migration of ATM into the cytoplasm where it promotes monoubiquitylation of Nemo and resulting IKK-mediated activation of NF-κB. ATM has many other functions in the DSB response beyond activation of NF-κB, and Nemo activates NF-κB downstream of diverse stimuli, including developmental or proinflammatory stimuli such as lipopolysaccharides (LPS). To elucidate the in vivo role of DSB-induced, ATM-dependent changes in expression of NF-κB-responsive genes, we generated mice expressing phosphomutant Nemo protein lacking consensus SQ sites for phosphorylation by ATM or related kinases. We demonstrate that these mice are viable/healthy, fertile, and exhibit overall normal B and T lymphocyte development. Moreover, treatment of their B lineage cells with LPS induces normal NF-κB-regulated gene expression changes. Furthermore, in marked contrast to results from a pre-B cell line, primary B lineage cells expressing phosphomutant Nemo treated with the genotoxic drug etoposide induce normal ATM- and Nemo-dependent changes in expression of NF-κB-regulated genes. Our data demonstrate that ATM-dependent phosphorylation of Nemo SQ motifs in vivo is dispensable for DSB-signaled changes in expression of NF-κB-regulated genes.
Project description:Pseudogenes are thought to be inactive gene sequences, but recent evidence of extensive pseudogene transcription raised the question of potential function. Here we discover and characterize the sets of lncRNAs induced by inflammatory signaling via TNFα. TNFα regulates hundreds of lncRNAs, including 54 pseudogene lncRNAs, several of which show exquisitely selective expression in response to specific cytokines and microbial components in a NF-κB-dependent manner. Lethe, a pseudogene lncRNA, is selectively induced by proinflammatory cytokines via NF-κB or glucocorticoid receptor agonist, and functions in negative feedback signaling to NF-κB. Lethe interacts with NF-κB subunit RelA to inhibit RelA DNA binding and target gene activation. Lethe level decreases with organismal age, a physiological state associated with increased NF-κB activity. These findings suggest that expression of pseudogenes lncRNAs are actively regulated and constitute functional regulators of inflammatory signaling. RNA profiles of wild type (WT) MEFs treated with TNF-alpha were generated by deep sequencing using Illumina GAIIx. Examination of H3K4me3 histome modification in MEF.
Project description:Transcription factor NF-κB regulates cellular responses to environmental cues. For many stimuli NF-κB resides only transiently in the nucleus. Consequently, time-dependent transcriptional outputs are a fundamental feature of NF-κB activation. Here we identify mechanisms that direct kinetic patterns of NF-κB-dependent gene expression and transcriptional outcomes in response to a transient NF-κB-inducing stimulus in B cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. Additionally, we identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells.
Project description:Transcription factor NF-κB regulates cellular responses to environmental cues. For many stimuli NF-κB resides only transiently in the nucleus. Consequently, time-dependent transcriptional outputs are a fundamental feature of NF-κB activation. Here we identify mechanisms that direct kinetic patterns of NF-κB-dependent gene expression and transcriptional outcomes in response to a transient NF-κB-inducing stimulus in B cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. Additionally, we identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells.
Project description:Transcription factor NF-κB regulates cellular responses to environmental cues. For many stimuli NF-κB resides only transiently in the nucleus. Consequently, time-dependent transcriptional outputs are a fundamental feature of NF-κB activation. Here we identify mechanisms that direct kinetic patterns of NF-κB-dependent gene expression and transcriptional outcomes in response to a transient NF-κB-inducing stimulus in B cells. By combining RELA binding, RNA polymerase II (Pol II) recruitment, and perturbation of NF-κB activation, we demonstrate that kinetic differences amongst early- and late-activated RELA target genes can be understood based on chromatin configuration prior to cell activation and RELA-dependent priming, respectively. Additionally, we identified genes that were repressed by RELA activation and others that responded to RELA-activated transcription factors. Cumulatively, our studies define an NF-κB-responsive inducible gene cascade in activated B cells.
Project description:The intracellular bacterial pathogen Legionella pneumophila causes an inflammatory pneumonia called Legionnaires’ Disease. For virulence, L. pneumophila requires a Dot/Icm type IV secretion system that translocates bacterial effectors to the host cytosol. L. pneumophila lacking the Dot/Icm system is recognized by Toll-like receptors (TLRs), leading to a canonical NF-κB-dependent transcriptional response. In addition, L. pneumophila expressing a functional Dot/Icm system potently induces unique transcriptional targets, including proinflammatory genes such as Il23a and Csf2. Here we demonstrate that this Dot/Icm-dependent response, which we term the effector-triggered response (ETR), requires five translocated bacterial effectors that inhibit host protein synthesis. Upon infection of macrophages with virulent L. pneumophila, these five effectors caused a global decrease in host translation, thereby preventing synthesis of IκB, an inhibitor of the NF-κB transcription factor. Thus, macrophages infected with wildtype L. pneumophila exhibited prolonged activation of NF-κB, which was associated with transcription of ETR target genes such as Il23a and Csf2. L. pneumophila mutants lacking the five effectors still activated TLRs and NF-κB, but because the mutants permitted normal IκB synthesis, NF-κB activation was more transient and was not sufficient to fully induce the ETR. L. pneumophila mutants expressing enzymatically inactive effectors were also unable to fully induce the ETR, whereas multiple compounds or bacterial toxins that inhibit host protein synthesis via distinct mechanisms recapitulated the ETR when administered with TLR ligands. Previous studies have demonstrated that the host response to bacterial infection is induced primarily by specific microbial molecules that activate TLRs or cytosolic pattern recognition receptors. Our results add to this model by providing a striking illustration of how the host immune response to a virulent pathogen can also be shaped by pathogen-encoded activities, such as inhibition of host protein synthesis. Three-condition experiment: macrophages left uninfected (negative control), or infected with wildtype Legionella pneumophila, or the mutant Δ5, which lacks five bacterial effectors involved in inhibition of host protein synthesis (lgt1, lgt2, lgt3, sidI, sidL) (two experimental conditions). Biological replicates: two, independently infected, harvested, and hybridized to arrays. One technical replicate per array.
Project description:The intracellular bacterial pathogen Legionella pneumophila causes an inflammatory pneumonia called Legionnaires’ Disease. For virulence, L. pneumophila requires a Dot/Icm type IV secretion system that translocates bacterial effectors to the host cytosol. L. pneumophila lacking the Dot/Icm system is recognized by Toll-like receptors (TLRs), leading to a canonical NF-κB-dependent transcriptional response. In addition, L. pneumophila expressing a functional Dot/Icm system potently induces unique transcriptional targets, including proinflammatory genes such as Il23a and Csf2. Here we demonstrate that this Dot/Icm-dependent response, which we term the effector-triggered response (ETR), requires five translocated bacterial effectors that inhibit host protein synthesis. Upon infection of macrophages with virulent L. pneumophila, these five effectors caused a global decrease in host translation, thereby preventing synthesis of IκB, an inhibitor of the NF-κB transcription factor. Thus, macrophages infected with wildtype L. pneumophila exhibited prolonged activation of NF-κB, which was associated with transcription of ETR target genes such as Il23a and Csf2. L. pneumophila mutants lacking the five effectors still activated TLRs and NF-κB, but because the mutants permitted normal IκB synthesis, NF-κB activation was more transient and was not sufficient to fully induce the ETR. L. pneumophila mutants expressing enzymatically inactive effectors were also unable to fully induce the ETR, whereas multiple compounds or bacterial toxins that inhibit host protein synthesis via distinct mechanisms recapitulated the ETR when administered with TLR ligands. Previous studies have demonstrated that the host response to bacterial infection is induced primarily by specific microbial molecules that activate TLRs or cytosolic pattern recognition receptors. Our results add to this model by providing a striking illustration of how the host immune response to a virulent pathogen can also be shaped by pathogen-encoded activities, such as inhibition of host protein synthesis. Four-condition experiment: macrophages left uninfected (negative control), or infected with wildtype Legionella pneumophila, the flagellin-deficient mutant ΔflaA, or the secretion-deficient mutant ΔdotA (three experimental conditions). Biological replicates: two, independently infected, harvested, and hybridized to arrays. One to two technical replicates per array, as indicated in file titles.
Project description:Gastric mucosa responds to the pathogen Helicobacter pylori (H. pylori) by producing and release of pro-inflammatory cytokines that activate the innate immune system mainly through activation of the transcription factor NF-κB. Although NF-κB signaling is well studied for many possible inducers, induction by H. pylori remains poorly understood. Here, we performed a high-throughput genome-wide RNAi screen for genes influencing H. pylori-induced NF-κB activation. In comparison to TNFα or IL‐1β NF‐κB signaling, we identified 21 proteins unique necessary for H. pylori NF-κB pathway and 24 factors that inhibited the activation. Furthermore, we present here the R/Bioconductor package Nested Effect Model for systematic use in high-throughput screens to classify newly identified factors. We identified alpha kinase 1 (ALPK1) as particular important for the H. pylori NF‐κB pathway without affecting TNFα or IL‐1β signaling. ALPK1 silencing inhibits activity of TAK1 and the IκB kinases (IKKs), degradation of the NF‐κB inhibitor IκBα, nuclear translocation of the NF‐κB subunit p65, and transcription of the NF‐κB target genes, e.g. IL‐8. Thus, we identify ALPK1 as a novel inflammatory regulator functioning particularly in the NF‐κB signaling network activated by H. pylori.