Project description:we report a novel nanomedicine (Gd@C82(OH)22 ) effectively inhibit human breast tumor growth by antiangiogenesis in vivo. To further identify which angiogenic factor(s) were affected on mRNA level, the "RT² Profiler™ PCR Array Mouse Angiogenesis (APMM-024, SuperArray Bioscience Corporation)" was used. Keywords: nanomedicine, Gd@C82(OH)22, angiogenesis, MCF-7, breast cancer
Project description:we report a novel nanomedicine (Gd@C82(OH)22 ) effectively inhibit human breast tumor growth by antiangiogenesis in vivo. To further identify which angiogenic factor(s) were affected on mRNA level, the "RT² Profiler™ PCR Array Mouse Angiogenesis (APMM-024, SuperArray Bioscience Corporation)" was used. Keywords: nanomedicine, Gd@C82(OH)22, angiogenesis, MCF-7, breast cancer In the experimental group, the tumor bearing mice were administered intraperitoneally (i.p.) [Gd@C82(OH)22]n saline solution once a day at the dose of 2.5mM/kg, after the tumor tissue implantation into the animal for 7 days, continuing until the mice were sacrificed. The 0.9% saline soultion was used as control. At the end of the experiment, parts of the tumor tissue was collected, and further be analyzed by PCR-array.
Project description:we report a novel nanomedicine (Gd@C82(OH)22 ) effectively inhibit human breast tumor growth by antiangiogenesis in vivo. To further identify which angiogenic factor(s) were affected on mRNA level, the "RT² Profiler™ PCR Array Mouse Angiogenesis (APMM-024, SuperArray Bioscience Corporation)" was used. Keywords: nanomedicine, Gd@C82(OH)22, angiogenesis, MCF-7, breast cancer In the experimental group, the tumor bearing mice were administered intraperitoneally (i.p.) [Gd@C82(OH)22]n saline solution once a day at the dose of 2.5mM/kg, after the tumor tissue implantation into the animal for 7 days, continuing until the mice were sacrificed. The 0.9% saline soultion was used as control. At the end of the experiment, parts of the tumor tissue was collected, and further be analyzed by PCR-array.
Project description:Vitamin D deficiency is associated with high risk of colon cancer and a variety of other diseases. The active vitamin D metabolite 1alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates gene transcription via its nuclear receptor (VDR), and posttranscriptional regulatory mechanisms of gene expression have also been proposed. We have identified microRNA-22 (miR-22) and several other miRNA species as 1,25(OH)2D3 targets in human colon cancer cells. Remarkably, miR-22 is induced by 1,25(OH)2D3 in a time-, dose-, and VDR-dependent manner. In SW480-ADH and HCT116 cells, miR-22 loss-of-function by transfection of a miR-22 inhibitor (anti-miR-22) suppresses the effect of 1,25(OH)2D3. Additionally, miR-22 inhibition increases cell migration per se and decreases the antimigratory effect of 1,25(OH)2D3 in both cell types. In silico analysis shows a significant overlap between genes suppressed by 1,25(OH)2D3 and miR-22 putative target genes. Consistently, miR-22 inhibition abrogates the reduction by 1,25(OH)2D3–mediated suppression of NELL2, OGN, HNRPH1, and NFAT5 genes. In 39 out of 50 (78%) human colon cancer patients, miR-22 expression was found lower in the tumor than in the matched normal tissue and correlated directly with that of VDR. Our results indicate that miR-22 is induced by 1,25(OH)2D3 in human colon cancer cells and it may contribute to its antitumor action against this neoplasia.
Project description:Vitamin D deficiency is associated with high risk of colon cancer and a variety of other diseases. The active vitamin D metabolite 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) regulates gene transcription via its nuclear receptor (VDR), and posttranscriptional regulatory mechanisms of gene expression have also been proposed. We have identified microRNA-22 (miR-22) and several other miRNA species as 1,25(OH)2D3 targets in human colon cancer cells. Remarkably, miR-22 is induced by 1,25(OH)2D3 in a time-, dose-, and VDR-dependent manner. In SW480-ADH and HCT116 cells, miR-22 loss-of-function by transfection of a miR-22 inhibitor (anti-miR-22) suppresses the effect of 1,25(OH)2D3. Additionally, miR-22 inhibition increases cell migration per se and decreases the antimigratory effect of 1,25(OH)2D3 in both cell types. In silico analysis shows a significant overlap between genes suppressed by 1,25(OH)2D3 and miR-22 putative target genes. Consistently, miR-22 inhibition abrogates the reduction by 1,25(OH)2D3–mediated suppression of NELL2, OGN, HNRPH1, and NFAT5 genes. In 39 out of 50 (78%) human colon cancer patients, miR-22 expression was found lower in the tumor than in the matched normal tissue and correlated directly with that of VDR. Our results indicate that miR-22 is induced by 1,25(OH)2D3 in human colon cancer cells and it may contribute to its antitumor action against this neoplasia. We have analysed a human colon cancer cell line, SW480-ADH, treated with 1,25(OH)2D3 or isopropanol (vehicle) at three different time points (24, 48 and 96 hours). Each experiment was replicated 2 times by dye swap.
Project description:As a site of direct encounter with the external environment, the intestine must balance nutrient uptake with barrier defense. This requires coordination between numerous cell types that engage whole tissue responses to changes in environmental variables. To investigate how nutrient uptake is regulated in the small intestine, we tested the effects of diets with different macronutrient composition on epithelial cell gene expression. We found that expression of enzymes and transporters required for digestion and absorption of carbohydrates, but not protein, was dependent on substrate availability. Surprisingly, the ‘on-demand’ induction of this machinery required gd Tcells, which regulated this program via suppression of IL-22 expression by ILC3s. We found that nutrient availability alters the tissue localization and transcriptome of gd T-cells and that transcriptional responses to diet involved cellular remodeling of the epithelial compartment. This work thus identified a novel role of intestinal gd T-cells in nutrient sensing.
Project description:gd T cells recognize unprocessed or non-peptide antigens, respond rapidly to infection, and localize to mucosal surfaces. We have hypothesized that the innate functions of gd T cells may be more similar to those of cells of the myeloid lineage than to other T cells. To begin to test this assumption, we have analyzed the direct response of cultured human and peripheral blood bovine gd T cells to pathogen associated molecular patterns (PAMPs) in the absence of APCs using microarray, real time RT-PCR, proteome array, and chemotaxis assays. Our results indicate that purified gd T cells respond directly to PAMPs by increasing expression of chemokine and activation related genes. The response was distinct from that to known gd T cell antigens and different from the response of myeloid cells to PAMPs. In addition, we have analyzed the expression of a variety of PAMP receptors in gd T cells. Freshly purified bovine gd T cells responded more robustly to PAMPs than did cultured human cells and expressed measurable mRNA encoding a variety of PAMP receptors. Our results suggest that rapid response to PAMPs through the expression of PAMP receptors may be another innate role of gd T cells. Keywords: parallel sample
Project description:Endohedral metallofullerenol Gd@C(82)(OH)(22) has recently been shown to effectively inhibit tumor growth; however, its potential adverse bioeffects remain to be understood before its wider applications. Here, we present our study on the interaction between Gd@C(82)(OH)(22) and WW domain, a representative protein domain involved in signaling and regulatory pathway, using all-atom explicit solvent molecular dynamics simulations. We find that Gd@C(82)(OH)(22) has an intrinsic binding preference to the binding groove, particularly the key signature residues Y28 and W39. In its binding competition with the native ligand PRM, Gd@C(82)(OH)(22) is shown to easily win the competition over PRM in occupying the active site, implying that Gd@C(82)(OH)(22) can impose a potential inhibitory effect on the WW domain. Further analyses with binding free energy landscapes reveal that Gd@C(82)(OH)(22) can not only directly block the binding site of the WW domain, but also effectively distract the PRM from its native binding pocket.
Project description:Fibroblast growth factor 23 (FGF23) is produced and secreted by osteocytes and is essential for maintaining phosphate homeostasis. One of the main regulators of FGF23, 1,25-dihydroxyvitamin D (1,25(OH)2D3), is primarily synthesized in the kidney from 25-hydroxyvitamin D (25(OH)D) by 1α-hydroxylase (encoded by CYP27B1). Hitherto, it is unclear whether osteocytes can convert 25(OH)D and thereby allow for 1,25(OH)2D3 to induce FGF23 production and secretion locally. Here, we differentiated MC3T3-E1 cells towards osteocyte-like cells expressing and secreting FGF23. Treatment with 10-6 M 25(OH)D resulted in conversion of 25(OH)D to 150 pmol/L 1,25(OH)2D3 and increased FGF23 expression and secretion but the converted amount of 1,25(OH)2D3 was insufficient to trigger an FGF23 response, so the effect on FGF23 was most likely directly caused by 25(OH)D. Interestingly, combining phosphate with 25(OH)D resulted in a synergistic increase in FGF23 expression and secretion, likely due to activation of additional signaling pathways by phosphate. Blockage of the vitamin D receptor (VDR) only partially abolished the effects of 25(OH)D or 25(OH)D combined with phosphate on Fgf23, while completely inhibiting the upregulation of cytochrome P450 family 24 subfamily A member 1 (Cyp24a1), encoding for 24-hydroxylase. RNA sequencing and in silico analyses showed that this could potentially be mediated by the nuclear receptors Retinoic Acid Receptor b (RARB) and Estrogen Receptor 2 (ESR2). Taken together, we demonstrate that osteocytes are able to convert 25(OH)D to 1,25(OH)2D3, but this is insufficient for FGF23 activation, implicating a direct effect of 25(OH)D in the regulation of FGF23, which occurs at least partially independent from its cognate vitamin D receptor Moreover, phosphate and 25(OH)D synergistically increase expression and secretion of FGF23, which warrants investigating consequences in patients receiving a combination of vitamin D analogues and phosphate supplements. These observations help us to further understand the complex relations between, phosphate, vitamin D and FGF23.
Project description:This study utilized comparative global gene expression microarray analysis of GD-affected and clinically healthy chickens from a recent GD outbreak to glean insights into the molecular and cellular changes associated with this disease process. Two-condition experiment, GD-affected vs. Healthy chickens. Biological replicates: 2 control replicates, 2 GD-infected replicates with dye-switching.