Project description:The Tudor domain-containing proteins (TDRDs) are an evolutionarily conserved family of proteins involved in germ cell development. We show here that in mice, TDRD5 is a novel component of the intermitochondrial cements (IMCs) and the chromatoid bodies (CBs), which are cytoplasmic ribonucleoprotein granules involved in RNA processing for spermatogenesis. Tdrd5-deficient males are sterile because of spermiogenic arrest at the round spermatid stage, with occasional failure in meiotic prophase. Without TDRD5, IMCs and CBs are disorganized, with mislocalization of their key components, including TDRD1/6/7/9 and MIWI/MILI/MIWI2. In addition, Tdrd5-deficient germ cells fail to repress LINE-1 retrotransposons with DNA-demethylated promoters. Cyclic adenosine monophosphate response element modulator (CREM) and TRF2, key transcription factors for spermiogenesis, are expressed in Tdrd5-deficient round spermatids, but their targets, including Prm1/Prm2/Tnp1, are severely down-regulated, which indicates the importance of IMC/CB-mediated regulation for postmeiotic gene expression. Strikingly, Tdrd5-deficient round spermatids injected into oocytes contribute to fertile offspring, demonstrating that acquisition of a functional haploid genome may be uncoupled from TDRD5 function.
Project description:Female sterile (1) Yb (Yb) is a primary component of Yb bodies, perinuclear foci considered to be the site of PIWI-interacting RNA (piRNA) biogenesis in Drosophila ovarian somatic cells (OSCs). Yb consists of three domains: Helicase C-terminal (Hel-C), RNA helicase, and extended Tudor (eTud) domains. We previously showed that the RNA helicase domain is necessary for Yb-RNA interaction, Yb body formation, and piRNA biogenesis. Here, we investigate the functions of Hel-C and eTud and reveal that Hel-C is dedicated to Yb-Yb homotypic interaction, while eTud is necessary for Yb-RNA association, as is the RNA helicase domain. All of these domains are indispensable for Yb body formation and transposon-repressing piRNA production. Strikingly, however, genic piRNAs unrelated to transposon silencing are produced in OSCs where Yb bodies are disassembled. We also reveal that Yb bodies are liquid-like multivalent condensates whose assembly depends on Yb-Yb homotypic interaction and Yb binding particularly with flamenco RNA transcripts, the source of transposon-repressing piRNAs. New insights into Yb body assembly and biological relevance of Yb bodies in transposon silencing have emerged.
Project description:Female sterile (1) Yb (Yb) is a primary component of Yb bodies, perinuclear foci considered to be the site of PIWI-interacting RNA (piRNA) biogenesis in Drosophila ovarian somatic cells (OSCs). Yb consists of three domains: Helicase C-terminal (Hel-C), RNA helicase, and extended Tudor (eTud) domains. We previously showed that the RNA helicase domain is necessary for Yb-RNA interaction, Yb body formation, and piRNA biogenesis. Here, we investigate the functions of Hel-C and eTud and reveal that Hel-C is dedicated to Yb-Yb homotypic interaction, while eTud is necessary for Yb-RNA association, as is the RNA helicase domain. All of these domains are indispensable for Yb body formation and transposon-repressing piRNA production. Strikingly, however, genic piRNAs unrelated to transposon silencing are produced in OSCs where Yb bodies are disassembled. We also reveal that Yb bodies are liquid-like multivalent condensates whose assembly depends on Yb-Yb homotypic interaction and Yb binding particularly with flamenco RNA transcripts, the source of transposon-repressing piRNAs. New insights into Yb body assembly and biological relevance of Yb bodies in transposon silencing have emerged.
Project description:Female sterile (1) Yb (Yb) is a primary component of Yb bodies, perinuclear foci known as the site of PIWI-interacting RNA (piRNA) biogenesis in Drosophila ovarian somatic cells. Yb consists of Helicase C-terminal (Hel-C), RNA helicase and extended Tudor (eTud) domains. We previously showed that the RNA helicase domain is necessary for Yb−RNA interaction, Yb body formation and piRNA biogenesis. Here, we investigated the functions of the two other domains and found that Hel-C and eTud are necessary for Yb to self-associate and to interact with RNAs and other Yb body components, respectively. Both domains were essential for Yb body formation and transposon silencing. Without eTud, piRNA production was completely impaired. Loss of Hel-C severely reduced the levels of transposon-targeting piRNAs, although genic piRNAs unrelated to transposon silencing were still produced. Similar phenotypes were observed when mutations in flamenco, the primary source of transposon-targeting piRNAs, led to the expression of attenuated RNAs. Yb bodies are liquid-like multivalent condensates whose assembly depends on Yb self-association and widespread Yb−flamenco RNA binding.
Project description:Activation of ?-globin gene expression in adults is known to be therapeutic for sickle cell disease. Thus, it follows that the converse, alleviation of repression, would be equally effective, since the net result would be the same: an increase in fetal hemoglobin. A GATA-1-FOG-1-Mi2 repressor complex was recently demonstrated to be recruited to the -566 GATA motif of the (A)?-globin gene. We show that Mi2? is essential for ?-globin gene silencing using Mi2? conditional knockout ?-YAC transgenic mice. In addition, increased expression of (A)?-globin was detected in adult blood from ?-YAC transgenic mice containing a T>G HPFH point mutation at the -566 GATA silencer site. ChIP experiments demonstrated that GATA-1 is recruited to this silencer at day E16, followed by recruitment of FOG-1 and Mi2 at day E17 in wild-type ?-YAC transgenic mice. Recruitment of the GATA-1-mediated repressor complex was disrupted by the -566 HPFH mutation at developmental stages when it normally binds. Our data suggest that a temporal repression mechanism is operative in the silencing of ?-globin gene expression and that either a trans-acting Mi2? knockout deletion mutation or the cis-acting -566 (A)?-globin HPFH point mutation disrupts establishment of repression, resulting in continued ?-globin gene transcription during adult definitive erythropoiesis.
Project description:Adipose tissue (AT) inflammation and infiltration by macrophages is associated with insulin resistance and type 2 diabetes in obese humans, offering a potential target for therapeutics. However, whether AT macrophages (ATMs) directly contribute to systemic glucose intolerance has not been determined. The reason is the lack of methods to ablate inflammatory genes expressed in macrophages specifically localized within AT depots, leaving macrophages in other tissues unaffected. Here we report that i.p. administration of siRNA encapsulated by glucan shells in obese mice selectively silences genes in epididymal ATMs, whereas macrophages within lung, spleen, kidney, heart, skeletal muscle, subcutaneous (SubQ) adipose, and liver are not targeted. Such administration of GeRPs to silence the inflammatory cytokines TNF-? or osteopontin in epididymal ATMs of obese mice caused significant improvement in glucose tolerance. These data are consistent with the hypothesis that cytokines produced by ATMs can exacerbate whole-body glucose intolerance.