Project description:Cisplatin is a widely used anti-tumor agent for the treatment of testicular and ovarian cancers. Carboplatin is used extensively for small cell, non small cell lung cancer and ovarian cancer. Oxaliplatin has recently been approved in the United States (US) for treatment of colorectal cancer. A large portion (in the range of 65% to 98%) of cisplatin in the blood plasma was bound to protein within a day after intravenous administration. The binding of cisplatin and other analogues to proteins and enzymes is generally believed to be the cause of several severe side effects such as ototoxicity and nephrotoxicity. The interactions between platinum based chemotherapy drugs and proteins is proposed to play important roles in both drug activity and toxicity. Therefore, a better understanding of the molecular mechanism of platinum-protein interactions may have an impact on optimization of strategies for treatment. The objective is to develop novel approaches and techniques to provide detailed mechanistic, kinetic and high-resolution structural information on the binding of platinum analogues to blood proteins, and to improve treatment efficacy and reduce side effects.
Project description:Primary outcome(s): Measure auto-lysosome function in the cytoplasm by electron microscopy to examine the changes in the number of autophagy.
Project description:We studied 38 multiple myeloma samples to discover mutations in ribosomal proteins. To this end, we ran a specifically designed targeted resequencing study to resequence the coding regions of all ribosomal proteins.
Project description:To elucidate the molecular mechanism behind the anti-NAFLD effect of HDCA, we screened for potential HDCA binding proteins using biotin-labeled HDCA and HuProt human proteome microarray.