Project description:Signatures of cytoplasmic proteins in the exoproteome distinguish community- and hospital-associated methicillin-resistant Staphylococcus aureus USA300 lineages
Project description:Methicillin-resistant Staphylococcus aureus (MRSA) is the causative agent of serious hospital- and community-associated infections. Due to the global rise in community-associated MRSA, the respective lineages are increasingly introduced into hospitals. This raises the question whether and, if so, how they adapt to this new environment. The present study was aimed at investigating how MRSA isolates of the USA300 lineage, infamous for causing infections in the general population, have adapted to the hospital environment. To this end, a collection of community- and hospital-associated USA300 isolates was compared by RNA-sequencing. Here we report that merely 460 genes were differentially expressed between these two epidemiologically distinct groups, including genes for virulence factors, oxidative stress responses and the purine, pyrimidine and fatty acid biosynthetic pathways. Differentially regulated virulence factors included leukotoxins and phenol-soluble modulins, implicated in staphylococcal escape from immune cells. We therefore investigated the ability of the studied isolates to survive internalization by human neutrophils. This showed that the community-associated isolates have the highest neutrophil-killing activity, while the hospital-associated isolates are better adapted to intra-neutrophil survival. Importantly, the latter trait protects internalized staphylococci against a challenge with antibiotics. We therefore conclude that prolonged intra-neutrophil survival serves as a relatively simple early adaptation of S. aureus USA300 to the hospital environment where antibiotic pressure is high.
Project description:BACKGROUND: Meticillin-resistant Staphylococcus aureus (MRSA) infections remain important medical and veterinary challenges. The MRSA isolated from dogs and cats typically belong to dominant hospital-associated clones, in the UK mostly EMRSA-15 (CC22 SCCmecIV), suggesting original human-to-animal transmission. Nevertheless, little is known about host-specific genetic variation within the same S. aureus lineage. HYPOTHESIS/OBJECTIVES: To identify host-specific variation amongst MRSA CC22 SCCmecIV by comparing isolates from pets with those from in-contact humans using whole-genome microarray. METHODS: Six pairs of MRSA CC22 SCCmecIV from human carriers (owners and veterinary staff) and their respective infected in-contact pets were compared using a 62-strain whole-genome S. aureus microarray (SAM-62). The presence of putative host-specific genes was subsequently determined in a larger number of human (n = 47) and pet isolates (n = 93) by PCR screening. RESULTS: Variation in mobile genetic elements (MGEs) occurred frequently and appeared largE: The variation found amongst MGEs highlights that genetic adaptation in MRSA continues. However, host-specific MGEs were not detected, which supports the hypothesis that pets may not be natural hosts of MRSA CC22 and emphasizes that rigorous hygiene measures are critical to prevent contamination and infection of dogs and cats. The host specificity of individual heavy-metal resistance genes warrants further investigation into different selection pressures in humans and animals.
Project description:Introduction Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are increasingly isolated, with USA300-0114 being the predominant clone in the USA. Comparative whole genome sequencing of USA300 isolates collected in 2002, 2003 and 2005 showed a limited number of single nucleotide polymorphisms and regions of difference. This suggests that USA300 has undergone rapid clonal expansion without great genomic diversification. However, whole genome comparison of CA-MRSA has been limited to isolates belonging to USA300. The aim of this study was to compare the genetic repertoire of different CA-MRSA clones with that of HA-MRSA from the USA and Europe through comparative genomic hybridization (CGH) to identify genetic clues that may explain the successful and rapid emergence of CA-MRSA. Materials and Methods Hierarchical clustering based on CGH of 48 MRSA isolates from the community and nosocomial infections from Europe and the USA revealed dispersed clustering of the 19 CA-MRSA isolates. This means that these 19 CA-MRSA isolates do not share a unique genetic make-up. Only the PVL genes were commonly present in all CA-MRSA isolates. However, 10 genes were variably present among 14 USA300 isolates. Most of these genes were present on mobile elements. Conclusion The genetic variation present among the 14 USA300 isolates is remarkable considering the fact that the isolates were recovered within one month and originated from a confined geographic area, suggesting continuous evolution of this clone. Data is also available from <ahref=http://bugs.sgul.ac.uk/E-BUGS-108 target=_blank>BuG@Sbase</a>
Project description:Neutrophil lysis after phagocytosis is a process potentially important in the pathogenesis of community-associated methicillin-resistant S. aureus (CA-MRSA) infection. The mechanism for this process is not currently known. Therefore, to better understand CA-MRSA virulence we used human oligonucleotide microarrays to investigate the mechanism underlying enhanced PMN lysis that occurs after phagocytosis of CA-MRSA. In order to examine the effect of S. aureus on the neutrophil transcriptome and to elucidate any possible differences in this effect between hospital- and community-associated S. aureus, we performed microarray expression analysis on human neutrophils treated with hospital- and community-associated S. aureus.
Project description:The phytohormone auxin plays crucial roles in nearly every aspect of plant growth and development. The AUXIN RESPONSE FACTOR (ARF) family of transcription factors regulates auxin-responsive gene expression and exhibit nuclear localization in regions of high auxin responsiveness. Here we show that activating ARF7 and ARF19 proteins accumulate in micron-sized assemblies within the cytoplasm of tissues with attenuated auxin responsiveness. The intrinsically disordered middle region and the folded PB1 interaction domain of ARFs drive protein assembly formation. Mutation of a single lysine within the PB1 domain abrogates cytoplasmic assemblies, promotes ARF nuclear localization, and results in an altered transcriptome and morphological defects. Our data suggest a model in which ARF nucleo-cytoplasmic partitioning regulates auxin responsiveness, thus providing a mechanism for cellular competence for auxin signaling.
Project description:The epidemic community-acquired methicillin-resistant S. aureus (CA-MRSA) clone USA300 has recently become a leading cause of hospital-associated bloodstream infections (BSI). Leveraging this recent introduction into hospitals and the limited genetic variation across the USA300 strains, we combined microbial comparative genomics with phenotypic analyses to discover adaptive mutations. USA300 isolates from BSI were found to have independently evolved single nucleotide variants in the transcriptional regulator sarZ. sarZ inactivation lead to altered expression of virulence factors, resulting in increased lethality in a murine model of BSI. Thus, USA300 strains can optimize their fitness in hospitals through evolution of higher virulence.
Project description:RNA is a central molecule for RNA viruses, acting as mRNA and genome. However, the interactions that viral (v)RNA establishes with the host cell is only starting to be elucidated. Here, we determine with unprecedented depth the composition of the ribonucleoproteins (RNPs) of the prototypical arthropod-borne Sindbis virus (SINV) using viral RNA interactome capture. We show that SINV RNAs engage with hundreds of cellular proteins and pathways, including a group of nuclear RNA-binding proteins (RBPs) with unknown roles in infection. Combining subcellular fractionation and proteomics with several orthogonal approaches, we demonstrate that these nuclear RBPs are selectively redistributed to the cytoplasm after infection, where they associate with the viral replication organelles. These nuclear RBPs potently supress viral gene expression, with activities spanning viral species and families. Our study provides a comprehensive and systematic analysis of SINV RNP composition, revealing a network of nuclear RBPs with moonlighting antiviral function.