Project description:Muscle contraction depends on interactions between actin and myosin filaments organized into sarcomeres, but the mechanism by which actin filaments incorporate into sarcomeres remains unclear. We have found that, during larval development in Caenorhabditis elegans, two members of the actin-assembling formin family, CYK-1 and FHOD-1, are present in striated body wall muscles near or on sarcomere Z lines, where barbed ends of actin filaments are anchored. Depletion of either formin during this period stunted growth of the striated contractile lattice, whereas their simultaneous reduction profoundly diminished lattice size and number of striations per muscle cell. CYK-1 persisted at Z lines in adulthood, and its near complete depletion from adults triggered phenotypes ranging from partial loss of Z line-associated filamentous actin to collapse of the contractile lattice. These results are, to our knowledge, the first genetic evidence implicating sarcomere-associated formins in the in vivo organization of the muscle cytoskeleton.
Project description:Exercise and caloric restriction improve health, including reducing risk of cardiovascular disease, neurological disease, and cancer. However, molecular mechanisms underlying these protections are poorly understood, partly due to the cost and time investment of mammalian long-term diet and exercise intervention studies. We subjected Caenorhabditis elegans nematodes to a 6-day, twice daily swimming exercise regimen, during which time the animals also experienced brief, transient food deprivation. Accordingly, we included a non-exercise group with the same transient food deprivation, a non-exercise control with ad libitum access to food, and a group that exercised in food-containing medium. Following these regimens, we assessed mitochondrial health and sensitivity to mitochondrial toxicants. Exercise protected against age-related decline in mitochondrial morphology in body-wall muscle. Food deprivation increased organismal basal respiration; however, exercise was the sole intervention that increased spare respiratory capacity and proton leak. We observed increased lifespan in exercised animals compared to both control and transiently food-deprived nematodes. Finally, exercised animals (and to a lesser extent, transiently food-deprived animals) were markedly protected against lethality from acute exposures to the mitotoxicants rotenone and arsenic. Thus, swimming exercise and brief food deprivation provide effective intervention in C. elegans, protecting from age-associated mitochondrial decline and providing resistance to mitotoxicant exposures.
Project description:During development, forces transmitted between cells are critical for sculpting epithelial tissues. Actomyosin contractility in the middle of the cell apex (medioapical) can change cell shape (e.g., apical constriction) but can also result in force transmission between cells via attachments to adherens junctions. How actomyosin networks maintain attachments to adherens junctions under tension is poorly understood. Here, we discovered that microtubules promote actomyosin intercellular attachments in epithelia during Drosophila melanogaster mesoderm invagination. First, we used live imaging to show a novel arrangement of the microtubule cytoskeleton during apical constriction: medioapical Patronin (CAMSAP) foci formed by actomyosin contraction organized an apical noncentrosomal microtubule network. Microtubules were required for mesoderm invagination but were not necessary for initiating apical contractility or adherens junction assembly. Instead, microtubules promoted connections between medioapical actomyosin and adherens junctions. These results delineate a role for coordination between actin and microtubule cytoskeletal systems in intercellular force transmission during tissue morphogenesis.
Project description:T-cell immunoglobulin mucin-3 (Tim-3) is an important checkpoint that induces maternal-fetal tolerance in pregnancy. Macrophages (Mφs) play essential roles in maintaining maternal-fetal tolerance, remodeling spiral arteries, and regulating trophoblast biological behaviors. In the present study, the formation of the labyrinth zone showed striking defects in pregnant mice treated with Tim-3 neutralizing antibodies. The adoptive transfer of Tim-3+Mφs, rather than Tim-3-Mφs, reversed the murine placental dysplasia resulting from Mφ depletion. With the higher production of angiogenic growth factors (AGFs, including PDGF-AA, TGF-α, and VEGF), Tim-3+dMφs were more beneficial in promoting the invasion and tube formation ability of trophoblasts. The blockade of AGFs in Tim-3+Mφs led to the narrowing of the labyrinthine layer of the placenta, compromising maternal-fetal tolerance, and increasing the risk of fetal loss. Meanwhile, the AGFs-treated Tim-3-Mφs could resolve the placental dysplasia and fetal loss resulting from Mφ depletion. These findings emphasized the vital roles of Tim-3 in coordinating Mφs-extravillous trophoblasts interaction via AGFs to promote pregnancy maintenance and in extending the role of checkpoint signaling in placental development. The results obtained in our study also firmly demonstrated that careful consideration of reproductive safety should be taken when selecting immune checkpoint and AGF blockade therapies in real-world clinical care.
Project description:Axons navigating through the developing nervous system are instructed by external attractive and repulsive cues. Emerging evidence suggests the same cues control dendrite development, but it is not understood how they differentially instruct axons and dendrites. We studied a C. elegans motor neuron whose axon and dendrite adopt different trajectories and lengths. We found that the guidance cue UNC-6 (Netrin) is required for both axon and dendrite development. Its repulsive receptor UNC-5 repelled the axon from the ventral cell body, whereas the attractive receptor UNC-40 (DCC) was dendritically enriched and promotes antero-posterior dendritic growth. Although the endogenous ventrally secreted UNC-6 instructs axon guidance, dorsal or even membrane-tethered UNC-6 could support dendrite development. Unexpectedly, the serine-threonine kinase PAR-4 (LKB1) was selectively required for the activity of the UNC-40 pathway in dendrite outgrowth. These data suggest that axon and dendrite of one neuron interpret common environmental cues with different receptors and downstream signaling pathways.
Project description:Previous work with cultured cells has shown transcription of muscle genes by serum response factor (SRF) can be stimulated by actin polymerization driven by proteins of the formin family. However, it is not clear if endogenous formins similarly promote SRF-dependent transcription during muscle development in vivo. We tested whether formin activity promotes SRF-dependent transcription in striated muscle in the simple animal model, Caenorhabditis elegans. Our lab has shown FHOD-1 is the only formin that directly promotes sarcomere formation in the worm's striated muscle. We show here FHOD-1 and SRF homolog UNC-120 both support muscle growth and also muscle myosin II heavy chain A expression. However, while a hypomorphic unc-120 allele blunts expression of a set of striated muscle genes, these genes are largely upregulated or unchanged by absence of FHOD-1. Instead, pharmacological inhibition of the proteasome restores myosin protein levels in worms lacking FHOD-1, suggesting elevated proteolysis accounts for their myosin deficit. Interestingly, proteasome inhibition does not restore normal muscle growth to fhod-1(Δ) mutants, suggesting formin contributes to muscle growth by some alternative mechanism. Overall, we find SRF does not depend on formin to promote muscle gene transcription in a simple in vivo system.
Project description:Multiple culture techniques now exist for the long-term maintenance of neonatal primary murine intestinal organoids in vitro; however, the achievement of contractile behavior within cultured organoids has thus far been infrequent and unpredictable. Here we combine finite element simulation of oxygen transport and quantitative comparative analysis of cellular microenvironments to elucidate the critical variables that promote reproducible intestinal organoid contraction. Experimentally, oxygen distribution was manipulated by adjusting the ambient oxygen concentration along with the use of semi-permeable membranes to enhance transport. The culture microenvironment was further tailored through variation of collagen type-I matrix density, addition of exogenous R-spondin1, and specification of culture geometry. "Air-liquid interface" cultures resulted in significantly higher numbers of contractile cultures relative to traditional submerged cultures. These interface cultures were confirmed to have enhanced and more symmetric oxygen transport relative to traditional submerged cultures. While oxygen availability was found to impact in vitro contraction rate and the orientation of contractile movement, it was not a key factor in enabling contractility. For all conditions tested, reproducible contractile behavior only occurred within a consistent and narrow range of collagen type-I matrix densities with porosities of approximately 20% and storage moduli near 30 Pa. This suggests that matrix density acts as a "permissive switch" that enables contractions to occur. Similarly, contractions were only observed in cultures with diameters less than 15.5 mm that had relatively large interfacial surface area between the compliant matrix and the rigid culture dish. Taken together, these data suggest that spatial geometry and mechanics of the microenvironment, which includes both the encapsulating matrix as well as the surrounding culture device, may be key determinants of intestinal organoid functionality. As peristaltic contractility is a crucial requirement for normal digestive tract function, this achievement of reproducible organoid contraction marks a pivotal advancement towards engineering physiologically functional replacement tissue constructs.
Project description:This study aimed to clarify whether the reflex excitation of muscle sympathetic nerves induced by contractions of the skeletal muscles modulates their contractility. In anesthetized rats, isometric tetanic contractions of the triceps surae muscles were induced by electrical stimulation of the intact tibial nerve before and after transection of the lumbar sympathetic trunk (LST), spinal cord, or dorsal roots. The amplitude of the tetanic force (TF) was reduced by approximately 10% at 20 min after transection of the LST, spinal cord, or dorsal roots. The recorded postganglionic sympathetic nerve activity from the lumbar gray ramus revealed that both spinal and supraspinal reflexes were induced in response to the contractions. Repetitive electrical stimulation of the cut peripheral end of the LST increased the TF amplitude. Our results indicated that the spinal and supraspinal somato-sympathetic nerve reflexes induced by contractions of the skeletal muscles contribute to the maintenance of their own contractile force.
Project description:The recent work of Besseling and Bringmann (2016) identified a molecular intervention for C. elegans in which premature segregation of maternal and paternal chromosomes in the fertilized oocyte can produce viable animals exhibiting a non-Mendelian inheritance pattern. Overexpression in embryos of a single protein regulating chromosome segregation (GPR-1) provides a germline derived clonally from a single parental gamete. We present a collection of strains and cytological assays to consistently generate and track non-Mendelian inheritance. These tools allow reproducible and high-frequency (>80%) production of non-Mendelian inheritance, the facile and simultaneous homozygosis for all nuclear chromosomes in a single generation, the precise exchange of nuclear and mitochondrial genomes between strains, and the assessments of non-canonical mitosis events. We show the utility of these strains by demonstrating a rapid assessment of cell lineage requirements (AB versus P1) for a set of genes (lin-2, lin-3, lin-12, and lin-31) with roles in C. elegans vulval development.
Project description:Because DNA polymerase cannot replicate telomeric DNA at linear chromosomal ends, eukaryotes have developed specific telomere maintenance mechanisms (TMMs). A major TMM involves specialized reverse transcriptase, telomerase. However, there also exist various telomerase-independent TMMs (TI-TMMs), which can arise both in pathological conditions (such as cancers) and during evolution. The TI-TMM in cancer cells is called alternative lengthening of telomeres (ALT), whose mechanism is not fully understood. We generated stably maintained telomerase-independent survivors from C. elegans telomerase mutants and found that, unlike previously described survivors in worms, these survivors "mobilize" specific internal sequence blocks for telomere lengthening, which we named TALTs (templates for ALT). The cis-duplication of internal genomic TALTs produces "reservoirs" of TALTs, whose trans-duplication occurs at all chromosome ends in the ALT survivors. Our discovery that different TALTs are utilized in different wild isolates provides insight into the molecular events leading to telomere evolution.