Project description:Some inducible yeast genes relocate to nuclear pores upon activation, but the general relevance of this phenomenon has remained largely unexplored. Here we show that the bidirectional hsp-16.2/41 promoter interacts with the nuclear pore complex upon activation by heat shock in the nematode Caenorhabditis elegans. Direct pore association was confirmed by both super-resolution microscopy and chromatin immunoprecipitation. The hsp-16.2 promoter was sufficient to mediate perinuclear positioning under basal level conditions of expression, both in integrated transgenes carrying from 1 to 74 copies of the promoter and in a single-copy genomic insertion. Perinuclear localization of the uninduced gene depended on promoter elements essential for induction and required the heat-shock transcription factor HSF-1, RNA polymerase II, and ENY-2, a factor that binds both SAGA and the THO/TREX mRNA export complex. After induction, colocalization with nuclear pores increased significantly at the promoter and along the coding sequence, dependent on the same promoter-associated factors, including active RNA polymerase II, and correlated with nascent transcripts.
Project description:The elongation phase of transcription by RNA Polymerase II (Pol II) involves numerous events that are tightly coordinated, including RNA processing, histone modification, and chromatin remodeling. RNA splicing factors are associated with elongating Pol II, and the interdependent coupling of splicing and elongation has been documented in several systems. Here we identify a conserved, multi-domain cyclophilin family member, SIG-7, as an essential factor for both normal transcription elongation and co-transcriptional splicing. In embryos depleted for SIG-7, RNA levels for over a thousand zygotically expressed genes are substantially reduced, Pol II becomes significantly reduced at the 3' end of genes, marks of transcription elongation are reduced, and unspliced mRNAs accumulate. Our findings suggest that SIG-7 plays a central role in both Pol II elongation and co-transcriptional splicing and may provide an important link for their coordination and regulation.
Project description:The RNA polymerase II (RNAP II)-associated protein (RPAP) 2 has been discovered through its association with various subunits of RNAP II in affinity purification coupled with mass spectrometry experiments. Here, we show that RPAP2 is a mainly cytoplasmic protein that shuttles between the cytoplasm and the nucleus. RPAP2 shuttling is tightly coupled with nuclear import of RNAP II, as RPAP2 silencing provokes abnormal accumulation of RNAP II in the cytoplasmic space. Most notably, RPAP4/GPN1 silencing provokes the retention of RPAP2 in the nucleus. Our results support a model in which RPAP2 enters the nucleus in association with RNAP II and returns to the cytoplasm in association with the GTPase GPN1/RPAP4. Although binding of RNAP II to RPAP2 is mediated by an N-terminal domain (amino acids 1-170) that contains a nuclear retention domain, and binding of RPAP4/GPN1 to RPAP2 occurs through a C-terminal domain (amino acids 156-612) that has a dominant cytoplasmic localization domain. In conjunction with previously published data, our results have important implications, as they indicate that RPAP2 controls gene expression by two distinct mechanisms, one that targets RNAP II activity during transcription and the other that controls availability of RNAP II in the nucleus.
Project description:Myosin VI (MVI) has been found to be overexpressed in ovarian, breast and prostate cancers. Moreover, it has been shown to play a role in regulating cell proliferation and migration, and to interact with RNA Polymerase II (RNAPII). Here, we find that backfolding of MVI regulates its ability to bind DNA and that a putative transcription co-activator NDP52 relieves the auto-inhibition of MVI to enable DNA binding. Additionally, we show that the MVI-NDP52 complex binds RNAPII, which is critical for transcription, and that depletion of NDP52 or MVI reduces steady-state mRNA levels. Lastly, we demonstrate that MVI directly interacts with nuclear receptors to drive expression of target genes, thereby suggesting a link to cell proliferation and migration. Overall, we suggest MVI may function as an auxiliary motor to drive transcription.
Project description:A key question in nuclear RNA surveillance is how target RNAs are recognized. To address this, we identified in vivo binding sites for nuclear RNA surveillance factors, Nrd1, Nab3 and the Trf4/5–Air1/2–Mtr4 polyadenylation (TRAMP) complex poly(A) polymerase Trf4, by UV crosslinking. Hit clusters were reproducibly found over known binding sites on small nucleolar RNAs (snoRNAs), pre-mRNAs and cryptic, unstable non-protein-coding RNAs (ncRNAs) ('CUTs'), along with ~642 predicted long anti-sense ncRNAs (asRNAs), ~178 intergenic ncRNAs and, surprisingly, ~1384 mRNAs. Five putative asRNAs tested were confirmed to exist and were stabilized by loss of Nrd1, Nab3 or Trf4. Mapping of micro-deletions and substitutions allowed clear definition of preferred, in vivo Nab3 and Nrd1 binding sites. Nrd1 and Nab3 were believed to be Pol II specific but, unexpectedly, bound many oligoadenylated Pol III transcripts, predominately pre-tRNAs. Depletion of Nrd1 or Nab3 stabilized tested Pol III transcripts and their oligoadenylation was dependent on Nrd1–Nab3 and TRAMP. Surveillance targets were enriched for non-encoded A-rich tails. These were generally very short (1–5 nt), potentially explaining why adenylation destabilizes these RNAs while stabilizing mRNAs with long poly(A) tails.
Project description:Gene expression in response to stimuli underlies many fundamental processes. However, how transcription is regulated under these scenarios is largely unknown. Here, we find a previously unknown role of nuclear actin in transcriptional regulation. The RNA-seq data reveal that nuclear actin is required for the serum-induced transcriptional program. Using super-resolution imaging, we found a remarkable enhancement of RNA polymerase II (Pol II) clustering upon serum stimulation, and this enhancement requires nuclear actin. Pol II clusters colocalized with the serum-response genes and nuclear actin filaments upon serum stimulation. Furthermore, N-WASP is required for serum-enhanced Pol II clustering. N-WASP phase-separated with Pol II and nuclear actin. In addition to serum stimulation, nuclear actin also enhanced Pol II clustering upon interferon-γ treatment. Together, our work unveils that nuclear actin promotes the formation of transcription factory on inducible genes, acting as a general mechanism underlying the rapid response to environmental cues.
Project description:In eukaryotes, the production of mature messenger RNA that exits the nucleus to be translated into protein in the cytoplasm requires precise and extensive modification of the nascent transcript. Any failure that compromises the integrity of an mRNA may cause its retention in the nucleus and trigger its degradation. Multiple studies indicate that mRNAs with processing defects accumulate in nuclear foci or 'dots' located near the site of transcription, but how exactly are defective RNAs recognized and tethered is still unknown. Here, we present evidence suggesting that unprocessed ?-globin transcripts render RNA polymerase II (Pol II) incompetent for termination and that this quality control process requires the integrity of the nuclear exosome. Our results show that unprocessed pre-mRNAs remain tethered to the DNA template in association with Pol II, in an Rrp6-dependent manner. This reveals an unprecedented link between nuclear RNA surveillance, the exosome and Pol II transcriptional termination.
Project description:Short RNA regulatory molecules, microRNAs, and short interfering RNAs participate in a range of developmental gene networks by base-pairing with their target sequences. Consistent with these findings, genes required for the biogenesis and function of short interfering RNAs and microRNAs, dicer (dcr-1 in Caenorhabditis elegans) and argonaute homologs, are essential for development in diverse organisms, including C. elegans. We demonstrate that genes required for the function of short RNAs synergize with the retinoblastoma tumor suppressor homolog lin-35 in negative regulation of the nuclear divisions in the intestine of C. elegans. The level of cyclin E (cye-1) expression is critical for nuclear divisions in the intestine and is elevated in double mutants in lin-35 and RNA interference pathway genes. We propose that RNA interference-related pathways cooperate with retinoblastoma in transcriptional repression of endogenous genes, an example being cyclin E.
Project description:Small GTPases share a biochemical mechanism and act as binary molecular switches. One important function of small GTPases in the cell is nucleocytoplasmic transport of both proteins and RNA. Here, we show the stable association of human GPN1 and GPN3, small GTPases related to Ran, with RNA polymerase II (RNAPII) isolated from either the cytoplasmic or nuclear fraction. GPN1 and GPN3 directly interact with RNAPII subunit 7 (RPB7)/RPB4 and the C-terminal domain (CTD) of RNAPII. Depletion of GPN1 or GPN3 using small interfering RNAs led to decreased RNAPII levels in the nucleus and an accumulation of this enzyme in the cytoplasm of human cells. Furthermore, isolation of a GPN1/GPN3/RNAPII complex from stable cell lines expressing a dominant negative GPN1 harboring mutations in the GTP-binding pocket demonstrated a role for these proteins in nuclear import of RNAPII. Thus, GPN1/GPN3 define a new family of small GTPases that are specialized for the transport of RNA polymerase II into the nucleus.