Project description:Oxidative stress is a well-known inducer of neuronal apoptosis and axonal degeneration. We previously showed that the E3 ubiquitin ligase ZNRF1 promotes Wallerian degeneration by degrading AKT to induce GSK3B activation. We now demonstrate that oxidative stress serves as an activator of the ubiquitin ligase activity of ZNRF1 by inducing epidermal growth factor receptor (EGFR)-mediated phosphorylation at the 103rd tyrosine residue and that the up-regulation of ZNRF1 activity by oxidative stress leads to neuronal apoptosis and Wallerian degeneration. We also show that nicotinamide adenine dinucleotide phosphate-reduced oxidase activity is required for the EGFR-dependent phosphorylation-induced activation of ZNRF1 and resultant AKT degradation via the ubiquitin proteasome system to induce Wallerian degeneration. These results indicate the pathophysiological significance of the EGFR-ZNRF1 pathway induced by oxidative stress in the regulation of neuronal apoptosis and Wallerian degeneration. A deeper understanding of the regulatory mechanism for ZNRF1 catalytic activity via phosphorylation will provide a potential therapeutic avenue for neurodegeneration.
Project description:Low extracellular calcium (Ca(2+)) promotes release of parathyroid hormone (PTH), which acts on multiple organs to maintain overall Ca(2+) balance. In the distal part of the nephron, PTH stimulates active Ca(2+) reabsorption via the adenylyl cyclase-cAMP-protein kinase A (PKA) pathway, but the molecular target of this pathway is unknown. The transient receptor potential vanilloid 5 (TRPV5) channel constitutes the luminal gate for Ca(2+) entry in the distal convoluted tubule and has several putative PKA phosphorylation sites. Here, we investigated the effect of PTH-induced cAMP signaling on TRPV5 activity. Using fluorescence resonance energy transfer, we studied cAMP and Ca(2+) dynamics during PTH stimulation of HEK293 cells that coexpressed the PTH receptor and TRPV5. PTH increased cAMP levels, followed by a rise in TRPV5-mediated Ca(2+) influx. PTH (1 to 31) and forskolin, which activate the cAMP pathway, mimicked the stimulation of TRPV5 activity. Remarkably, TRPV5 activation was limited to conditions of strong intracellular Ca(2+) buffering. Cell surface biotinylation studies demonstrated that forskolin did not affect TRPV5 expression on the cell surface, suggesting that it alters the single-channel activity of a fixed number of TRPV5 channels. Application of the PKA catalytic subunit, which phosphorylated TRPV5, directly increased TRPV5 channel open probability. Alanine substitution of threonine-709 abolished both in vitro phosphorylation and PTH-mediated stimulation of TRPV5. In summary, PTH activates the cAMP-PKA signaling cascade, which rapidly phosphorylates threonine-709 of TRPV5, increasing the channel's open probability and promoting Ca(2+) reabsorption in the distal nephron.
Project description:Eukaryotic mRNA decapping proteins are essential for normal turnover of mRNA. Yet, the mechanism of bulk mRNA turnover during stress responses and its importance to stress tolerance are poorly understood. Here, we showed that dehydration stress activated MPK6 to phosphorylate serine 237 of Arabidopsis DCP1 and phospho-DCP1 preferentially associated with DCP5 to promote mRNA decapping in vivo. This process was essential for stress adaption as dcp5-1 and DCP1-S237A plants were hypersensitive to stress compared with wild-type (WT) plants. Microarray analysis revealed that dehydration-induced expression of many stress responsive genes was compromised in dcp5-1, whereas a subset of transcripts was over-represented in this mutant. Further analysis revealed that this subset of transcripts was likely the direct targets of stress-triggered mRNA decapping in WT. Our results suggest that mRNA decapping through MPK6-DCP1-DCP5 pathway serves as a rapid response to dehydration stress in Arabidopsis.
Project description:YAP is the major downstream effector of the Hippo pathway, which controls cell growth, tissue homeostasis, and organ size. Aberrant YAP activation, resulting from dysregulation of the Hippo pathway, is frequently observed in human cancers. YAP is a transcription co-activator, and the key mechanism of YAP regulation is its nuclear and cytoplasmic translocation. The Hippo pathway component, LATS, inhibits YAP by phosphorylating YAP at Ser127, leading to 14-3-3 binding and cytoplasmic retention of YAP Here, we report that osmotic stress stimulates transient YAP nuclear localization and increases YAP activity even when YAP Ser127 is phosphorylated. Osmotic stress acts via the NLK kinase to induce YAP Ser128 phosphorylation. Phosphorylation of YAP at Ser128 interferes with its ability to bind to 14-3-3, resulting in YAP nuclear accumulation and induction of downstream target gene expression. This osmotic stress-induced YAP activation enhances cellular stress adaptation. Our findings reveal a critical role for NLK-mediated Ser128 phosphorylation in YAP regulation and a crosstalk between osmotic stress and the Hippo pathway.
Project description:The tumor-suppressor protein p53 is tightly controlled in normal cells by its two negative regulators--the E3 ubiquitin ligase MDM2 and its homolog MDMX. Under stressed conditions such as DNA damage, p53 escapes MDM2- and MDMX-mediated functional inhibition and degradation, acting to prevent damaged cells from proliferating through induction of cell cycle arrest, DNA repair, senescence or apoptosis. Ample evidence suggests that stress signals induce phosphorylation of MDM2 and MDMX, leading to p53 activation. However, the structural basis of stress-induced p53 activation remains poorly understood because of the paucity of technical means to produce site-specifically phosphorylated MDM2 and MDMX proteins for biochemical and biophysical studies. Herein, we report total chemical synthesis, via native chemical ligation, and functional characterization of (24-108)MDMX and its Tyr99-phosphorylated analog with respect to their ability to interact with a panel of p53-derived peptide ligands and PMI, a p53-mimicking but more potent peptide antagonist of MDMX, using FP and surface plasmon resonance techniques. Phosphorylation of MDMX at Tyr99 weakens peptide binding by approximately two orders of magnitude. Comparative X-ray crystallographic analyses of MDMX and of pTyr99 MDMX in complex with PMI as well as modeling studies reveal that the phosphate group of pTyr99 imposes extensive steric clashes with the C-terminus of PMI or p53 peptide and induces a significant lateral shift of the peptide ligand, contributing to the dramatic decrease in the binding affinity of MDMX for p53. Because DNA damage activates c-Abl tyrosine kinase that phosphorylates MDMX at Tyr99, our findings afford a rare glimpse at the structural level of how stress-induced MDMX phosphorylation dislodges p53 from the inhibitory complex and activates it in response to DNA damage.
Project description:Mitochondrial functions are essential for the survival and function of neurons. Recently, it has been demonstrated that mitochondrial functions are highly associated with mitochondrial morphology, which is dynamically changed by the balance between fusion and fission. Mitochondrial morphology is primarily controlled by the activation of dynamin-related proteins including dynamin-related protein 1 (Drp1), which promotes mitochondrial fission. Drp1 activity is regulated by several post-translational modifications, thereby modifying mitochondrial morphology. Here, we found that phosphorylation of Drp1 at serine 616 (S616) is mediated by cyclin-dependent kinase 5 (CDK5) in post-mitotic rat neurons. Perturbation of CDK5 activity modified the level of Drp1S616 phosphorylation and mitochondrial morphology in neurons. In addition, phosphorylated Drp1S616 preferentially localized as a cytosolic monomer compared with total Drp1. Furthermore, roscovitine, a chemical inhibitor of CDKs, increased oligomerization and mitochondrial translocation of Drp1, suggesting that CDK5-dependent phosphorylation of Drp1 serves to reduce Drp1's fission-promoting activity. Taken together, we propose that CDK5 has a significant role in the regulation of mitochondrial morphology via inhibitory phosphorylation of Drp1S616 in post-mitotic neurons.
Project description:Limitation of excessive inflammation due to selective degradation of pro-inflammatory proteins is one of the cytoprotective functions attributed to autophagy. In the current study, we highlight that selective autophagy also plays a vital role in promoting the establishment of a robust inflammatory response. Under inflammatory conditions, here TLR3-activation by poly(I:C) treatment, the inflammation repressor TNIP1 (TNFAIP3 interacting protein 1) is phosphorylated by Tank-binding kinase 1 (TBK1) activating an LIR motif that leads to the selective autophagy-dependent degradation of TNIP1, supporting the expression of pro-inflammatory genes and proteins. This selective autophagy efficiently reduces TNIP1 protein levels early (0-4 h) upon poly(I:C) treatment to allow efficient initiation of the inflammatory response. At 6 h, TNIP1 levels are restored due to increased transcription avoiding sustained inflammation. Thus, similarly as in cancer, autophagy may play a dual role in controlling inflammation depending on the exact state and timing of the inflammatory response.
Project description:The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.
Project description:Axonal transport is critical for neuronal development and function, and defective axonal transport has been implicated in neurodegenerative diseases. However, how axonal transport is regulated, or how defective transport leads to neuronal degeneration, remains unclear. Here, we report that c-Jun NH2-terminal kinase (JNK)/stress-activated protein kinase-associated protein 1 (JSAP1, also known as JNK-interacting protein 3 (JIP3)) and JNK-associated leucine zipper protein (JLP) are essential for postnatal brain development. Mice with a double-knockout (dKO) in Jsap1 and Jlp in the dorsal telencephalon developed progressive neuron loss. Using a primary neuron culture system with induced disruption of targeted genes, combined with gene rescue experiments, we show that JSAP1 and JLP regulate kinesin-1-dependent axonal transport with functional redundancy. We also show that the binding of JSAP1 and JLP to kinesin-1 heavy chain is crucial for interactions between kinesin-1 and microtubules. Furthermore, we describe a molecular mechanism by which defective kinesin-1-dependent axonal transport in Jsap1:Jlp dKO neurons causes axonal degeneration and subsequent neuronal death. JNK hyperactivation because of increased intra-axonal Ca(2+) in the Jsap1:Jlp dKO neurons was found to mediate both the axonal degeneration and neuronal death, in cooperation with the Ca(2+)-dependent protease calpain. Our results indicate that axonal JNK may relocate to the nucleus in a dynein-dependent manner, where it activates the transcription factor c-Jun, resulting in neuronal death. Taken together, our data establish JSAP1 and JLP as positive regulators of kinesin-1-dependent axonal transport, which prevents neuronal degeneration.
Project description:Oxidative stress can cause apoptosis in neurons and may result in neurodegenerative diseases. However, the signaling mechanisms leading to oxidative stress-induced neuronal apoptosis are not fully understood. Oxidative stress stimulates aberrant activation of cyclin-dependent kinase 5 (CDK5), thought to promote neuronal apoptosis by phosphorylating many cell death-related substrates. Here, using protein pulldown methods, immunofluorescence experiments and in vitro kinase assays, we identified chloride intracellular channel 4 (CLIC4), the expression of which increases during neuronal apoptosis, as a CDK5 substrate. We found that activated CDK5 phosphorylated serine 108 in CLIC4, increasing CLIC4 protein stability, and accumulation. Pharmacological inhibition or shRNA-mediated silencing of CDK5 decreased CLIC4 levels in neurons. Moreover, CLIC4 overexpression led to neuronal apoptosis, whereas knockdown or pharmacological inhibition of CLIC4 attenuated H2O2-induced neuronal apoptosis. These results implied that CLIC4, by acting as a substrate of CDK5, mediated neuronal apoptosis induced by aberrant CDK5 activation. Targeting CLIC4 in neurons may therefore provide a therapeutic approach for managing progressive neurodegenerative diseases that arise from neuronal apoptosis.