Project description:Increased plasma branched-chain amino acid concentrations are associated with insulin resistance, and intravenous amino acid infusion blunts insulin-mediated glucose disposal. We tested the hypothesis that protein ingestion impairs insulin-mediated glucose disposal by leucine-mediated mTOR signaling, which can inhibit AKT. We measured glucose disposal and muscle p-mTOR(Ser2448), p-AKT(Ser473), and p-AKT(Thr308) in 22 women during a hyperinsulinemic-euglycemic clamp procedure with and without concomitant ingestion of whey protein (0.6 g/kg fat-free mass; n = 11) or leucine that matched the amount given with whey protein (n = 11). Both whey protein and leucine ingestion raised plasma leucine concentration by approximately twofold and muscle p-mTOR(Ser2448) by ∼30% above the values observed in the control (no amino acid ingestion) studies; p-AKT(Ser473) and p-AKT(Thr308) were not affected by whey protein or leucine ingestion. Whey protein ingestion decreased insulin-mediated glucose disposal (median 38.8 [quartiles 30.8, 61.8] vs. 51.9 [41.0, 77.3] µmol glucose/µU insulin · mL(-1) · min(-1); P < 0.01), whereas ingestion of leucine did not (52.3 [43.3, 65.4] vs. 52.3 [43.9, 73.2]). These results indicate that 1) protein ingestion causes insulin resistance and could be an important regulator of postprandial glucose homeostasis and 2) the insulin-desensitizing effect of protein ingestion is not due to inhibition of AKT by leucine-mediated mTOR signaling.
Project description:Class IIa histone deacetylases (Class IIa HDACs) play critical roles in regulating essential cellular metabolism and inflammatory pathways. However, dissecting the specific roles of each class IIa HDAC isoform is hindered by the pan-inhibitory effect of current inhibitors and a lack of tools to probe their functions beyond epigenetic regulation. In this study, a novel PROTAC-based compound B4 is developed, which selectively targets and degrades HDAC7, resulting in the effective attenuation of a specific set of proinflammatory cytokines in both lipopolysaccharide (LPS)-stimulated macrophages and a mouse model. By employing B4 as a molecular probe, evidence is found for a previously explored role of HDAC7 that surpasses its deacetylase function, suggesting broader implications in inflammatory processes. Mechanistic investigations reveal the critical involvement of HDAC7 in the Toll-like receptor 4 (TLR4) signaling pathway by directly interacting with the TNF receptor-associated factor 6 and TGFβ-activated kinase 1 (TRAF6-TAK1) complex, thereby initiating the activation of the downstream mitogen-activated protein kinase/nuclear factor-κB (MAPK/NF-κB) signaling cascade and subsequent gene transcription. This study expands the insight into HDAC7's role within intricate inflammatory networks and highlights its therapeutic potential as a novel target for anti-inflammatory treatments.
Project description:This is a Phase 1/2, first-in-human, open-label, dose escalation and dose-expansion study of E-602, administered alone and in combination with cemiplimab.
Project description:RationaleProtein kinase (PK)Cs and calpain cysteine proteases are highly expressed in myocardium. Ischemia produces calcium overload that activates calpains and conventional PKCs. However, calpains can proteolytically process PKCs, and the potential in vivo consequences of this interaction are unknown.ObjectiveTo determine the biochemical and pathophysiological consequences of calpain-mediated cardiac PKCα proteolysis.Methods and resultsIsolated mouse hearts subjected to global ischemia/reperfusion demonstrated cleavage of PKCα. Calpain 1 overexpression was not sufficient to produce PKCα cleavage in normal hearts, but ischemia-induced myocardial PKCα cleavage and myocardial injury were greatly increased by cardiac-specific expression of calpain 1. In contrast, calpain 1 gene ablation or inhibition with calpastatin prevented ischemia/reperfusion induced PKCα cleavage; infarct size was decreased and ventricular function enhanced in infarcted calpain 1 knockout hearts. To determine consequences of PKCα fragmentation on myocardial protein phosphorylation, transgenic mice were created conditionally expressing full-length PKCα or its N-terminal and C-terminal calpain 1 cleavage fragments. Two-dimensional mapping of ventricular protein extracts showed a distinct PKCα phosphorylation profile that was exaggerated and distorted in hearts expressing the PKCα C-terminal fragment. MALDI mass spectroscopy revealed hyperphosphorylation of myosin-binding protein C and phosphorylation of atypical substrates by the PKCα C-terminal fragment. Expression of parent PKCα produced a mild cardiomyopathy, whereas myocardial expression of the C-terminal PKCα fragment induced a disproportionately severe, rapidly lethal cardiomyopathy.ConclusionsProteolytic processing of PKCα by calcium-activated calpain activates pathological cardiac signaling through generation of an unregulated and/or mistargeted kinase. Production of the PKCα C-terminal fragment in ischemic hearts occurs via a receptor-independent mechanism.
Project description:Itch, the unpleasant sensation that evokes a desire to scratch, accompanies numerous skin and nervous system disorders. In many cases, pathological itch is insensitive to antihistamine treatment. Recent studies have identified members of the Mas-related G protein-coupled receptor (Mrgpr) family that are activated by mast cell mediators and promote histamine-independent itch. MrgprA3 and MrgprC11 act as receptors for the pruritogens chloroquine and BAM8-22, respectively. However, the signaling pathways and transduction channels activated downstream of these pruritogens are largely unknown. We found that TRPA1 is the downstream target of both MrgprA3 and MrgprC11 in cultured sensory neurons and heterologous cells. TRPA1 is required for Mrgpr-mediated signaling, as sensory neurons from TRPA1-deficient mice exhibited markedly diminished responses to chloroquine and BAM8-22. Similarly, TRPA1-deficient mice displayed little to no scratching in response to these pruritogens. Our findings indicate that TRPA1 is an essential component of the signaling pathways that promote histamine-independent itch.
Project description:The endoplasmic reticulum (ER)-localized peroxiredoxin 4 (PRDX4) supports disulfide bond formation in eukaryotic cells lacking endoplasmic reticulum oxidase 1 (ERO1). The source of peroxide that fuels PRDX4-mediated disulfide bond formation has remained a mystery, because ERO1 is believed to be a major producer of hydrogen peroxide (H2O2) in the ER lumen. We report on a simple kinetic technique to track H2O2 equilibration between cellular compartments, suggesting that the ER is relatively isolated from cytosolic or mitochondrial H2O2 pools. Furthermore, expression of an ER-adapted catalase to degrade lumenal H2O2 attenuated PRDX4-mediated disulfide bond formation in cells lacking ERO1, whereas depletion of H2O2 in the cytosol or mitochondria had no similar effect. ER catalase did not effect the slow residual disulfide bond formation in cells lacking both ERO1 and PRDX4. These observations point to exploitation of a hitherto unrecognized lumenal source of H2O2 by PRDX4 and a parallel slow H2O2-independent pathway for disulfide formation.
Project description:Ubiquitylation targets proteins for proteasome-mediated degradation and plays important roles in many biological processes including apoptosis. However, non-proteolytic functions of ubiquitylation are also known. In Drosophila, the inhibitor of apoptosis protein 1 (DIAP1) is known to ubiquitylate the initiator caspase DRONC in vitro. Because DRONC protein accumulates in diap1 mutant cells that are kept alive by caspase inhibition ("undead" cells), it is thought that DIAP1-mediated ubiquitylation causes proteasomal degradation of DRONC, protecting cells from apoptosis. However, contrary to this model, we show here that DIAP1-mediated ubiquitylation does not trigger proteasomal degradation of full-length DRONC, but serves a non-proteolytic function. Our data suggest that DIAP1-mediated ubiquitylation blocks processing and activation of DRONC. Interestingly, while full-length DRONC is not subject to DIAP1-induced degradation, once it is processed and activated it has reduced protein stability. Finally, we show that DRONC protein accumulates in "undead" cells due to increased transcription of dronc in these cells. These data refine current models of caspase regulation by IAPs.
Project description:Porcine epidemic diarrhea virus (PEDV) infection in neonatal piglets can cause up to 100% mortality, resulting in significant economic loss in the swine industry. Like other coronaviruses, PEDV N protein is a nucleocapsid protein and abundantly presents at all stages of infection. Previously, we reported that the N protein of trypsin-independent PEDV 8aa is cleaved during virus replication. In this study, we further investigated the nature of N protein cleavage using various methods including protease cleavage assays with or without various inhibitors and mutagenesis study. We found that PEDV 8aa infection in Vero cells leads to apoptotic cell death, and caspase 6 or 7 can cleave PEDV 8aa N protein at the late stage of the replication. The caspase-mediated cleavage occurs between D424 and G425 near the C-terminal of N protein. We also report that both cleaved and uncleaved N proteins are exclusively localized in the cytoplasm of PEDV infected cells.
Project description:The function of dendritic cells (DCs) in the immune system is based on their ability to sense and present foreign antigens. Powerful tools to research DC function and to apply in cell-based immunotherapy are either silencing or overexpression of genes achieved by lentiviral transduction. To date, efficient lentiviral transduction of DCs or their monocyte derived counterparts (MDDCs) required high multiplicity of infection (MOI) or the exposure to the HIV-2/SIV protein Vpx to degrade viral restriction factor SAM domain and HD domain-containing protein 1 (SAMHD1). Here we present a Vpx-independent method for efficient (>95%) transduction of MDDCs at lower MOI. The protocol can be used both for ectopic gene expression and knock-down. Introducing shRNA targeting viral entry receptor CD4 and restriction factor SAMHD1 into MDDCs resulted in down-regulation of targeted proteins and, consequently, expected impact on HIV infection. This protocol for MDDCs transduction is robust and free of the potential risk arising from the use of Vpx which creates a virus infection-prone environment, potentially dangerous in clinical setting.
Project description:The pregnane X receptor (PXR) was isolated as a xenosensor regulating xenobiotic responses. In this study, we show that PXR plays an endobiotic role by impacting lipid homeostasis. Expression of an activated PXR in the livers of transgenic mice resulted in an increased hepatic deposit of triglycerides. This PXR-mediated lipid accumulation was independent of the activation of the lipogenic transcriptional factor SREBP-1c (sterol regulatory element-binding protein 1c) and its primary lipogenic target enzymes, including fatty-acid synthase (FAS) and acetyl-CoA carboxylase 1 (ACC-1). Instead, the lipid accumulation in transgenic mice was associated with an increased expression of the free fatty acid transporter CD36 and several accessory lipogenic enzymes, such as stearoyl-CoA desaturase-1 (SCD-1) and long chain free fatty acid elongase. Studies using transgenic and knock-out mice showed that PXR is both necessary and sufficient for Cd36 activation. Promoter analyses revealed a DR-3-type of PXR-response element in the mouse Cd36 promoter, establishing Cd36 as a direct transcriptional target of PXR. The hepatic lipid accumulation and Cd36 induction were also seen in the hPXR "humanized" mice treated with the hPXR agonist rifampicin. The activation of PXR was also associated with an inhibition of pro-beta-oxidative genes, such as peroxisome proliferator-activated receptor alpha (PPARalpha) and thiolase, and an up-regulation of PPARgamma, a positive regulator of CD36. The cross-regulation of CD36 by PXR and PPARgamma suggests that this fatty acid transporter may function as a common target of orphan nuclear receptors in their regulation of lipid homeostasis.