Schmitz2014 - RNA triplex formation
Ontology highlight
ABSTRACT:
Schmitz2014 - RNA triplex formation
The model is parameterized using the
parameters for gene CCDC3 from Supplementary Table S1. The two
miRNAs which form the triplex together with CCDC3 are miR-551b and
miR-138.
This model is described in the article:
Cooperative gene regulation
by microRNA pairs and their identification using a
computational workflow.
Schmitz U, Lai X, Winter F,
Wolkenhauer O, Vera J, Gupta SK.
Nucleic Acids Res. 2014 Jul; 42(12):
7539-7552
Abstract:
MicroRNAs (miRNAs) are an integral part of gene regulation
at the post-transcriptional level. Recently, it has been shown
that pairs of miRNAs can repress the translation of a target
mRNA in a cooperative manner, which leads to an enhanced
effectiveness and specificity in target repression. However, it
remains unclear which miRNA pairs can synergize and which genes
are target of cooperative miRNA regulation. In this paper, we
present a computational workflow for the prediction and
analysis of cooperating miRNAs and their mutual target genes,
which we refer to as RNA triplexes. The workflow integrates
methods of miRNA target prediction; triplex structure analysis;
molecular dynamics simulations and mathematical modeling for a
reliable prediction of functional RNA triplexes and target
repression efficiency. In a case study we analyzed the human
genome and identified several thousand targets of cooperative
gene regulation. Our results suggest that miRNA cooperativity
is a frequent mechanism for an enhanced target repression by
pairs of miRNAs facilitating distinctive and fine-tuned target
gene expression patterns. Human RNA triplexes predicted and
characterized in this study are organized in a web resource at
www.sbi.uni-rostock.de/triplexrna/.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000530.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
SUBMITTER: Felix Winter
PROVIDER: BIOMD0000000530 | BioModels | 2024-09-02
REPOSITORIES: BioModels
ACCESS DATA