The Interplay between K63-linked Polyubiquitinated DDX17 and m6A-modified miRNAs Regulates Hypoxia-induced Tumor Initiation
Ontology highlight
ABSTRACT: DEAD-box RNA-binding proteins (RBPs) play a significant role in RNA metabolism to achieve cellular homeostasis, including miRNA biogenesis and transcription. Hypoxia induces stemness cell-like characteristics in cancer cells and promotes malignant progression. Despite the fact that hypoxia can induce the changes in protein and RNA modification, thereby regulating downstream gene expressions, how modifications at different molecular layers interplay with each other are poorly understood. Here we show that hypoxia induces HectH9-mediated K63-linked polyubiquitination of the DEAD-box protein DDX17 as well as reduces N6-methyladenosine (m6A) marks in pri-miRNAs. While m6A potentiates DDX17 binding to pri-miRNAs, decreased m6A modifications of pri-miRNAs and increased polyubiquitination of DDX17 under hypoxia lead to decreased DDX17 binding to pri-miRNAs binding. These events enhance the association of DDX17 with the ubiquitin receptor p300 and lead to a decrease in miRNA biogenesis, especially for miRNAs regulating stemness and stemness-related genes. In addition, polyubiquitinated DDX17 together with p300 upregulates H3K56Ac levels on the stemness and stemness-related genes, resulting in enhancement of tumor initiating ability. Post-transcriptionally, decreased miRNA production, including those targeting stemness genes or stemness-related genes, also facilitates tumor initiation. Together, hypoxia triggers DDX17 poly-ubiquitination, which orchestrates dual mechanisms to increase tumor initiating ability and promote tumor progression.
ORGANISM(S): Homo Sapiens (human)
SUBMITTER: Kou-Juey Wu
PROVIDER: PXD006059 | JPOST Repository | Fri Mar 09 00:00:00 GMT 2018
REPOSITORIES: jPOST
ACCESS DATA