Zhou2015 - Circadian clock with immune regulator NPR1
Ontology highlight
ABSTRACT:
Zhou2015 - Circadian clock with immune
regulator NPR1
Arabidopsis clock model modified from
P2012 (Pokhilko et al., 2013 -
BIOMD0000000445)
model to include the master immune regulator NPR1 coupling to LHY,
TOC1 and PRR7.
Triggers: The Global Quantities contain triggers that allow
one to change coupling settings, Salicyclic acid (SA) treatment and
npr1 mutants.
LHY_on: true->NPR1 couples to LHY
PRR7_on: true->NPR1 couples to PRR7
WT: true->WT plants, false->npr1 mutant plants
SA: true->SA treated plants, false->no treatment
This model has L=1, i.e. operates only under constant light
conditions and is not aiming to make preditions under diurnal
conditions. Due to period overshoot only time points after 28h are
relevant.
This model is described in the article:
Redox rhythm reinforces the
circadian clock to gate immune response.
Zhou M, Wang W, Karapetyan S, Mwimba
M, Marqués J, Buchler NE, Dong X.
Nature 2015 Jun;
Abstract:
Recent studies have shown that in addition to the
transcriptional circadian clock, many organisms, including
Arabidopsis, have a circadian redox rhythm driven by the
organism's metabolic activities. It has been hypothesized that
the redox rhythm is linked to the circadian clock, but the
mechanism and the biological significance of this link have
only begun to be investigated. Here we report that the master
immune regulator NPR1 (non-expressor of pathogenesis-related
gene 1) of Arabidopsis is a sensor of the plant's redox state
and regulates transcription of core circadian clock genes even
in the absence of pathogen challenge. Surprisingly, acute
perturbation in the redox status triggered by the immune signal
salicylic acid does not compromise the circadian clock but
rather leads to its reinforcement. Mathematical modelling and
subsequent experiments show that NPR1 reinforces the circadian
clock without changing the period by regulating both the
morning and the evening clock genes. This balanced network
architecture helps plants gate their immune responses towards
the morning and minimize costs on growth at night. Our study
demonstrates how a sensitive redox rhythm interacts with a
robust circadian clock to ensure proper responsiveness to
environmental stimuli without compromising fitness of the
organism.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000577.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
SUBMITTER: Sargis Karapetyan
PROVIDER: BIOMD0000000577 | BioModels | 2024-09-02
REPOSITORIES: BioModels
ACCESS DATA