Kollarovic2016 - Cell fate decision at G1-S transition
Ontology highlight
ABSTRACT:
Kollarovic2016 - Cell fate decision at G1-S
transition
This model is described in the article:
To senesce or not to
senesce: how primary human fibroblasts decide their cell fate
after DNA damage.
Kollarovic G, Studencka M, Ivanova
L, Lauenstein C, Heinze K, Lapytsko A, Talemi SR, Figueiredo AS,
Schaber J.
Aging (Albany NY) 2016 Jan;
Abstract:
Excessive DNA damage can induce an irreversible cell cycle
arrest, called senescence, which is generally perceived as an
important tumour-suppressor mechanism. However, it is unclear
how cells decide whether to senesce or not after DNA damage. By
combining experimental data with a parameterized mathematical
model we elucidate this cell fate decision at the G1-S
transition. Our model provides a quantitative and conceptually
new understanding of how human fibroblasts decide whether DNA
damage is beyond repair and senesce. Model and data imply that
the G1-S transition is regulated by a bistable hysteresis
switch with respect to Cdk2 activity, which in turn is
controlled by the Cdk2/p21 ratio rather than cyclin abundance.
We experimentally confirm the resulting predictions that to
induce senescence i) in healthy cells both high initial and
elevated background DNA damage are necessary and sufficient,
and ii) in already damaged cells much lower additional DNA
damage is sufficient. Our study provides a mechanistic
explanation of a) how noise in protein abundances allows cells
to overcome the G1-S arrest even with substantial DNA damage,
potentially leading to neoplasia, and b) how accumulating DNA
damage with age increasingly sensitizes cells for
senescence.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000632.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
SUBMITTER: Joerg Schaber
PROVIDER: BIOMD0000000632 | BioModels | 2024-09-02
REPOSITORIES: BioModels
ACCESS DATA