Project description:Hexanoic acid and its derivatives have been recently recognized as value-added materials and can be synthesized by several microbes. Of them, Megasphaera elsdenii has been considered as an interesting hexanoic acid producer because of its capability to utilize a variety of carbons sources. However, the cellular metabolism and physiology of M. elsdenii still remain uncharacterized. Therefore, in order to better understand hexanoic acid synthetic metabolism in M. elsdenii, we newly reconstructed its genome-scale metabolic model, iME375, which accounts for 375 genes, 521 reactions, and 443 metabolites. A constraint-based analysis was then employed to evaluate cell growth under various conditions. Subsequently, a flux ratio analysis was conducted to understand the mechanism of bifurcated hexanoic acid synthetic pathways, including the typical fatty acid synthetic pathway via acetyl-CoA and the TCA cycle in a counterclockwise direction through succinate. The resultant metabolic states showed that the highest hexanoic acid production could be achieved when the balanced fractional contribution via acetyl-CoA and succinate in reductive TCA cycle was formed in various cell growth rates. The highest hexanoic acid production was maintained in the most perturbed flux ratio, as phosphoenolpyruvate carboxykinase (pck) enables the bifurcated pathway to form consistent fluxes. Finally, organic acid consuming simulations suggested that succinate can increase both biomass formation and hexanoic acid production.
Project description:Xanthomonas oryzae pv. oryzae (Xoo) is a vascular pathogen that causes leaf blight in rice, leading to severe yield losses. Since the usage of chemical control methods has not been very promising for the future disease management, it is of high importance to systematically gain new insights about Xoo virulence and pathogenesis, and devise effective strategies to combat the rice disease. To do this, we reconstructed a genome-scale metabolic model of Xoo (iXOO673) and validated the model predictions using culture experiments. Comparison of the metabolic architecture of Xoo and other plant pathogens indicated that the Entner-Doudoroff pathway is a more common feature in these bacteria than previously thought, while suggesting some of the unique virulence mechanisms related to Xoo metabolism. Subsequent constraint-based flux analysis allowed us to show that Xoo modulates fluxes through gluconeogenesis, glycogen biosynthesis, and degradation pathways, thereby exacerbating the leaf blight in rice exposed to nitrogenous fertilizers, which is remarkably consistent with published experimental literature. Moreover, model-based interrogation of transcriptomic data revealed the metabolic components under the diffusible signal factor regulon that are crucial for virulence and survival in Xoo. Finally, we identified promising antibacterial targets for the control of leaf blight in rice by using gene essentiality analysis.
Project description:BackgroundPichia pastoris has been recognized as an effective host for recombinant protein production. A number of studies have been reported for improving this expression system. However, its physiology and cellular metabolism still remained largely uncharacterized. Thus, it is highly desirable to establish a systems biotechnological framework, in which a comprehensive in silico model of P. pastoris can be employed together with high throughput experimental data analysis, for better understanding of the methylotrophic yeast's metabolism.ResultsA fully compartmentalized metabolic model of P. pastoris (iPP668), composed of 1,361 reactions and 1,177 metabolites, was reconstructed based on its genome annotation and biochemical information. The constraints-based flux analysis was then used to predict achievable growth rate which is consistent with the cellular phenotype of P. pastoris observed during chemostat experiments. Subsequent in silico analysis further explored the effect of various carbon sources on cell growth, revealing sorbitol as a promising candidate for culturing recombinant P. pastoris strains producing heterologous proteins. Interestingly, methanol consumption yields a high regeneration rate of reducing equivalents which is substantial for the synthesis of valuable pharmaceutical precursors. Hence, as a case study, we examined the applicability of P. pastoris system to whole-cell biotransformation and also identified relevant metabolic engineering targets that have been experimentally verified.ConclusionThe genome-scale metabolic model characterizes the cellular physiology of P. pastoris, thus allowing us to gain valuable insights into the metabolism of methylotrophic yeast and devise possible strategies for strain improvement through in silico simulations. This computational approach, combined with synthetic biology techniques, potentially forms a basis for rational analysis and design of P. pastoris metabolic network to enhance humanized glycoprotein production.
Project description:Diatoms are major primary producers in polar environments where they can actively grow under extremely variable conditions. Integrative modeling using a genome-scale model (GSM) is a powerful approach to decipher the complex interactions between components of diatom metabolism and can provide insights into metabolic mechanisms underlying their evolutionary success in polar ecosystems. We developed the first GSM for a polar diatom, Fragilariopsis cylindrus, which enabled us to study its metabolic robustness using sensitivity analysis. We find that the predicted growth rate was robust to changes in all model parameters (i.e., cell biochemical composition) except the carbon uptake rate. Constraints on total cellular carbon buffer the effect of changes in the input parameters on reaction fluxes and growth rate. We also show that single reaction deletion of 20% to 32% of active (nonzero flux) reactions and single gene deletion of 44% to 55% of genes associated with active reactions affected the growth rate, as well as the production fluxes of total protein, lipid, carbohydrate, DNA, RNA, and pigments by less than 1%, which was due to the activation of compensatory reactions (e.g., analogous enzymes and alternative pathways) with more highly connected metabolites involved in the reactions that were robust to deletion. Interestingly, including highly divergent alleles unique for F. cylindrus increased its metabolic robustness to cellular perturbations even more. Overall, our results underscore the high robustness of metabolism in F. cylindrus, a feature that likely helps to maintain cell homeostasis under polar conditions.
Project description:BackgroundThermus thermophilus, an extremely thermophilic bacterium, has been widely recognized as a model organism for studying how microbes can survive and adapt under high temperature environment. However, the thermotolerant mechanisms and cellular metabolism still remains mostly unravelled. Thus, it is highly required to consider systems biological approaches where T. thermophilus metabolic network model can be employed together with high throughput experimental data for elucidating its physiological characteristics under such harsh conditions.ResultsWe reconstructed a genome-scale metabolic model of T. thermophilus, iTT548, the first ever large-scale network of a thermophilic bacterium, accounting for 548 unique genes, 796 reactions and 635 unique metabolites. Our initial comparative analysis of the model with Escherichia coli has revealed several distinctive metabolic reactions, mainly in amino acid metabolism and carotenoid biosynthesis, producing relevant compounds to retain the cellular membrane for withstanding high temperature. Constraints-based flux analysis was, then, applied to simulate the metabolic state in glucose minimal and amino acid rich media. Remarkably, resulting growth predictions were highly consistent with the experimental observations. The subsequent comparative flux analysis under different environmental conditions highlighted that the cells consumed branched chain amino acids preferably and utilized them directly in the relevant anabolic pathways for the fatty acid synthesis. Finally, gene essentiality study was also conducted via single gene deletion analysis, to identify the conditional essential genes in glucose minimal and complex media.ConclusionsThe reconstructed genome-scale metabolic model elucidates the phenotypes of T. thermophilus, thus allowing us to gain valuable insights into its cellular metabolism through in silico simulations. The information obtained from such analysis would not only shed light on the understanding of physiology of thermophiles but also helps us to devise metabolic engineering strategies to develop T. thermophilus as a thermostable microbial cell factory.
Project description:Actinoplanes sp. SE50/110 produces the ?-glucosidase inhibitor acarbose, which is used to treat type 2 diabetes mellitus. To obtain a comprehensive understanding of its cellular metabolism, a genome-scale metabolic model of strain SE50/110, iYLW1028, was reconstructed on the bases of the genome annotation, biochemical databases, and extensive literature mining. Model iYLW1028 comprises 1028 genes, 1128 metabolites, and 1219 reactions. One hundred and twenty-two and eighty one genes were essential for cell growth on acarbose synthesis and sucrose media, respectively, and the acarbose biosynthetic pathway in SE50/110 was expounded completely. Based on model predictions, the addition of arginine and histidine to the media increased acarbose production by 78 and 59%, respectively. Additionally, dissolved oxygen has a great effect on acarbose production based on model predictions. Furthermore, genes to be overexpressed for the overproduction of acarbose were identified, and the deletion of treY eliminated the formation of by-product component C. Model iYLW1028 is a useful platform for optimizing and systems metabolic engineering for acarbose production in Actinoplanes sp. SE50/110.
Project description:BACKGROUND: Fermentation of xylose, the major component in hemicellulose, is essential for economic conversion of lignocellulosic biomass to fuels and chemicals. The yeast Scheffersomyces stipitis (formerly known as Pichia stipitis) has the highest known native capacity for xylose fermentation and possesses several genes for lignocellulose bioconversion in its genome. Understanding the metabolism of this yeast at a global scale, by reconstructing the genome scale metabolic model, is essential for manipulating its metabolic capabilities and for successful transfer of its capabilities to other industrial microbes. RESULTS: We present a genome-scale metabolic model for Scheffersomyces stipitis, a native xylose utilizing yeast. The model was reconstructed based on genome sequence annotation, detailed experimental investigation and known yeast physiology. Macromolecular composition of Scheffersomyces stipitis biomass was estimated experimentally and its ability to grow on different carbon, nitrogen, sulphur and phosphorus sources was determined by phenotype microarrays. The compartmentalized model, developed based on an iterative procedure, accounted for 814 genes, 1371 reactions, and 971 metabolites. In silico computed growth rates were compared with high-throughput phenotyping data and the model could predict the qualitative outcomes in 74% of substrates investigated. Model simulations were used to identify the biosynthetic requirements for anaerobic growth of Scheffersomyces stipitis on glucose and the results were validated with published literature. The bottlenecks in Scheffersomyces stipitis metabolic network for xylose uptake and nucleotide cofactor recycling were identified by in silico flux variability analysis. The scope of the model in enhancing the mechanistic understanding of microbial metabolism is demonstrated by identifying a mechanism for mitochondrial respiration and oxidative phosphorylation. CONCLUSION: The genome-scale metabolic model developed for Scheffersomyces stipitis successfully predicted substrate utilization and anaerobic growth requirements. Useful insights were drawn on xylose metabolism, cofactor recycling and mechanism of mitochondrial respiration from model simulations. These insights can be applied for efficient xylose utilization and cofactor recycling in other industrial microorganisms. The developed model forms a basis for rational analysis and design of Scheffersomyces stipitis metabolic network for the production of fuels and chemicals from lignocellulosic biomass.
Project description:The reconstruction and analysis of genome-scale metabolic models constitutes a powerful systems biology approach, with applications ranging from basic understanding of genotype-phenotype mapping to solving biomedical and environmental problems. However, the biological insight obtained from these models is limited by multiple heterogeneous sources of uncertainty, which are often difficult to quantify. Here we review the major sources of uncertainty and survey existing approaches developed for representing and addressing them. A unified formal characterization of these uncertainties through probabilistic approaches and ensemble modeling will facilitate convergence towards consistent reconstruction pipelines, improved data integration algorithms, and more accurate assessment of predictive capacity.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of transcription start sites for Escherichia coli under different conditions. By obtaining sequence from 5' RACE (rapid amplification of cDNA ends) followed by deep sequencing, we generated genome-wide TSS (transcription start site) maps for E. coli. This TSS-map was integrated with ChIP-chip data generated for 6 sigma factors in E. coli, resulting in reconstruction of sigma factor network in E. coli. Examination of transcription start sites by biological duplicates from E. coli for 3 different conditions