Project description:tRNAs are encoded by a large gene family, usually with several isogenic tRNAs interacting with the same codon. Mutations in the anticodon region of other tRNAs can overcome specific tRNA deficiencies. Phylogenetic analysis suggests that such mutations have occurred in evolution, but the driving force is unclear. We show that in yeast suppressor mutations in other tRNAs are able to overcome deficiency of the essential TRT2-encoded tRNAThrCGU at high temperature (40°C). Surprisingly, these tRNA suppressor mutations were obtained after whole-genome transformation with DNA from thermotolerant Kluyveromyces marxianus or Ogataea polymorpha strains, but from which the mutations did apparently not originate. We suggest that transient presence of donor DNA in the host facilitates proliferation at high temperature and thus increases the chances for occurrence of spontaneous mutations suppressing defective growth at high temperature. Whole-genome sequence analysis of three transformants revealed only four to five non-synonymous mutations of which one causing TRT2 anticodon stem stabilization and two anticodon mutations in non-threonyl-tRNAs, tRNALysCUU and tRNAeMetCAU, were causative. Both anticodon mutations suppressed lethality of TRT2 deletion and apparently caused the respective tRNAs to become novel substrates for threonyl-tRNA synthetase. LC-MS/MS data could not detect any significant mistranslation and RT-qPCR results contradicted induction of the unfolded protein response. We suggest that stress conditions have been a driving force in evolution for the selection of anticodon-switching mutations in tRNAs as revealed by phylogenetic analysis. Importance of the work In this work we have identified for the first time the causative elements in a eukaryotic organism introduced by applying whole-genome transformation and responsible for the selectable trait of interest, i.e. high temperature tolerance. Surprisingly, the whole-genome transformants contained just a few SNPs, which were unrelated to the sequence of the donor DNA. In each of three independent transformants, we have identified a SNP in a tRNA, either stabilizing the essential tRNAThrCGU at high temperature or switching the anticodon of tRNALysCUU or tRNAeMetCAU into CGU, which is apparently enough for in vivo recognition by threonyl-tRNA synthetase. LC-MS/MS analysis indeed indicated absence of significant mistranslation. Phylogenetic analysis showed that similar mutations have occurred throughout evolution and we suggest that stress conditions may have been a driving force for their selection. The low number of SNPs introduced by whole-genome transformation may favor its application for improvement of industrial yeast strains.
Project description:Proteomics on whole cell lysates from Mycobacterium tuberculosis CDC1551, a ppe38-ppe71 deletion mutant and a complemented strain grown in modified sautons medium till mid logarithmic phase
Project description:Related surrogate species are often used to study the molecular basis of pathogenicity of a pathogen on the basis of a shared set of biological features generally attributable to a shared core genome consisting of orthologous genes. An important and understudied aspect, however, is the extent to which regulatory features affecting the expression of such shared genes are present in both species. Here we report on an analysis of whole transcriptome maps for an important member of the TB complex Mycobacterium bovis and a closely related model organism for studying mycobacterial pathogenicity Mycobacterium marinum.
Project description:11 Mycobacterium tuberculosis mutants resistant to D-cycloserine were isolated in the laboratory. Genomic DNA was isolated and whole genomes were sequenced to perform SNP calling and identify possible mutations associated with resistance.
Project description:Mycobacterium tilburgii is a fastidious mycobacterium which has previously been reported to cause severe disseminated infections. Genome sequencing of the M. tilburgii MEPHI clinical isolate yielded 3.14 Mb, with 66.3% GC content, and confirmed phylogenetic placement within the Mycobacterium simiae complex.
Project description:In other bacteria, arginine induces the expression of genes involved in arginine catabolism. This study obtained the identification of genes involved in the arginine metabolism of Mycobacterium tuberculosis. Mycobacterium tuberculosis was cultured with arginine or ammonium chloride as sole nitrogen source. In the log phase of growth, RNA was isolated and whole genome expression was determined. The study contains three biological replicates.